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A B S T R A C T

Molecular dynamics (MD) is a powerful technique that can be used to study thermal vibrations/phonons and properly account for their role in different phenomena
that are important in mechanical engineering, chemistry, physics and materials science. However, despite the widespread usage of MD to study various phenomena,
direct comparisons between experiments and simulations are often associated with low fidelity, due to the inaccuracy of the interatomic potentials (IAPs) employed.
This issue has become the main barrier to utilizing MD for studying phenomena that depend on or involve atomic vibrations, and subsequently deriving physically
meaningful insights. Towards solving this problem, we present a new approach to making IAPs that are specifically optimized to accurately describe thermal
vibrations/phonons. The approach enables nearly exact reproduction of ab initio phonon dispersion relations (i.e., < 1%) error), accurate forces and thermal con-
ductivity (i.e., < 5% and<10% error respectively), and low computational expense like that of traditional IAPs.

1. Introduction

In solids and molecules, atoms vibrate about their respective equi-
librium positions, and this thermal motion can be understood as a su-
perposition of the structure’s normal modes, which are usually termed
phonons. These vibrations play an important role in a variety of ma-
terial properties and physical phenomena such as chemical reactions,
mass/ion diffusivity, crack propagation, thermal conductivity, elec-
trical conductivity, etc. Thus, it is important that such vibrations can be
accurately modeled, so that the modeling of these properties/phe-
nomena is enabled with high fidelity predictive power. Such predictive
power is important to realize deeper scientific understanding and en-
able subsequent efforts to exploit this knowledge towards engineering
objectives.

To appreciate the importance of modelling atomic vibrations, con-
sider the growing number of anomalous or unexplained experimental
phonon transport results that have persisted in the literature for more
than a decade. One example of this was the very low thermal con-
ductivity measured in W/Al2O3 laminate structures [1], which was
lower than that of fully amorphous Al2O3, and its minimum thermal
conductivity prediction. Another example is the lower bound of inter-
face conductance in silicon–germanium superlattices according to the
diffuse-mismatch model, which was surpassed experimentally. [2] The
fact that theoretical calculations for these limiting cases were not able
to bound the measurements left many open questions as to how such
low thermal conductivity/conductance can be possible. Another inter-
esting case was the measurements of the thermal conductivity of rough
silicon nanowires, which reached about the same value as amorphous
silicon, but with a clearly crystalline core that was much thicker than

the rough region [3]. More unexplained phenomena include the ob-
servation of extremely low thermal conductivity in layered materials
[4,5], by Cahill et al., and the lower limit of thermal conductivity in
disordered crystals [6] and amorphous materials [7]. In addition to
phonon transport, phonon/normal modes also affect chemical reac-
tions, [8] mass/ion diffusion [9], and phase changes [10], and such
processes are influenced by exciting specific modes. [11–17] Here it is
important to highlight that all of the aforementioned observations lack
rigorous theoretical explanations, thus preventing the rational en-
gineering of such effects. As a result, solving the problem of describing
thermal vibrations accurately with an IAP that can be evaluated quickly
(i.e., fast) will have an impact that spans across multiple disciplines.

In theory, a MD based method such as Green-Kubo modal analysis
(GKMA) [18] or interface conductance modal analysis (ICMA) [19]
could elucidate what happens in these material systems/measurements,
but such a study could be easily dismissed because there isn’t an ac-
curate IAP one can use. Thus, the critical problem that must be solved is
to develop fast yet accurate IAPs that are constructed purely from ab
initio inputs, thereby imparting them with high fidelity predictive
power. It is from this perspective that we seek to develop a fast, accu-
rate, closed form description of the potential energy surface (PES), so
that we can calculate the forces on atoms and the resulting dynamics.
First principles methods like density functional theory (DFT) provide an
accurate way of probing the PES and predicting atomic forces but are
computationally limited to small systems (< 500 atoms) because of the
cubic scaling with the number of electrons in the system. Classical
methods, however, calculate forces as the spatial gradient of a closed
form expression, an analytical IAP, that approximates the PES. Evalu-
ating an IAP computationally scales linearly with the number of atoms
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and can therefore be orders of magnitude cheaper to evaluate as com-
pared to DFT. This allows for MD simulations at the relevant length
(i.e., 103-109 atoms) [20] and time (i.e., > 1 ns) [21] scales needed to
study vibrational phenomena in a variety of fields such as defect and
dislocation dynamics [22], catalysis [23], ion diffusion [24], protein
folding [25], and mechanics of materials [26,27].

The problem is that many IAPs are inaccurate, even when just de-
scribing thermal vibrations around equilibrium. Fig. 1 for example,
shows the dispersion for crystalline silicon (c-Si), calculated with 10
commonly cited IAPs in literature [28–37], compared to our DFT cal-
culations (see supplementary information (SI) for details) and experi-
ments from literature [38].

The thermal conductivity results in Fig. 1 were obtained with the
Boltzmann transport equation (BTE) under the relaxation time ap-
proximation (RTA) using the Alamode program [39], and only third
order force constants were used in computing relaxation times. We note
that this suggests our high temperature results are overestimated, since
we excluded 4th order force constants in calculating relaxation times,
and Feng et al showed that quartic scattering decreases thermal con-
ductivity at high temperatures. [40] However, since our main purpose
here is comparing the IAP thermal conductivity to DFT, more compu-
tationally expensive full BTE solutions or inclusion of quartic scattering
is not needed.

Although the machine learned Gaussian approximation potential
(GAP) produces decent agreement on the dispersion, due to its longer-
ranged non-radial interaction terms, there is still some discrepancy near
the Brillouin zone boundaries because the cutoff radius is not long
enough to include all the interactions necessary (i.e., interactions in
crystalline silicon need to extend out to 8th nearest neighbors to
properly reproduce the dispersion). Nonetheless, such a potential rea-
sonably models thermal conductivity, but the computational cost is the
tradeoff, as GAP is currently one of the most computationally expensive
potentials with an evaluation time (i.e., on our high performance
computing (HPC) hardware) of 0.01 s per timestep per atom per core,
[37] which is ~ 1000 times slower than the Tersoff potential. Alter-
natively, the EDIP parameterization of 2012, [35] which is 3 orders of
magnitude faster, exhibits excellent agreement in Fig. 1 for the thermal
conductivity, well within 10% over a large range of temperatures.
However, it does so for the wrong reasons, because the forces predicted

by this potential deviate by an average of 48% compared to the forces
in 50 DFT structures where the atoms are displaced randomly up to
0.05 Å. EDIP 2012 [35] consequently fails to reproduce the vibration
dynamics in c-Si, since a force discrepancy around 50% is quite drastic
[41], which is further exemplified by its poor description of the har-
monic portion of the PES, resulting in significant errors in the phonon
dispersion. EDIP 2012 therefore does not accurately model the under-
lying physics and mode interactions behind thermal transport and as a
result, such a potential cannot provide predictive insights for thermal
transport or other phenomena that depend on/involve thermal vibra-
tions.

Regarding other machine learned potentials in literature,
Minamitani et al obtained excellent phonon dispersion and thermal
conductivity agreement for silicon and GaN using neural network po-
tentials. [42] Babaei et al used the GAP potential to obtain excellent
phonon dispersion and thermal conductivity for silicon, while also ac-
curately reproducing phonon-vacancy scattering phenomena. [43] Li
et al showed excellent agreement for thermal transport in different
phases of silicon. [44] All of these recent approaches encompass the
traditional machine learning approach, where some function (e.g.
neural network, GAP, etc.) are trained to the total force with no post
hoc correction of the force. Two methods presented in this manuscript,
however, involve a post hoc correction of the harmonic force compo-
nent and a procedure to machine learn the anharmonic force, while
modelling the harmonic force separately.

How well an IAP describes thermal vibrations, i.e., the normal
modes and their interactions, depends on how well it captures the
harmonic and anharmonic aspects of the PES respectively. [45] The
harmonic portion of the PES dictates the individual mode character-
istics such as mode frequencies/density of states, specific heat, entropy,
as well as the mode shapes or dispersion in a material with symmetry.
Anharmonicity, on the other hand, determines the mode–mode inter-
actions, that govern phenomena like thermal expansion [46] thermal
conductivity [47] joule heating [48], and coupling effects for coherent
excitation [49]. The reason it is useful to think about the PES as com-
posed of portions from these two delineations is specifically because the
range of interactions that must be included for each portion is usually
quite different. More specifically, it is well known that in order to
capture the phonon dispersion properly, many materials require

Fig. 1. (a) Phonon dispersion calculated using 10 commonly cited IAPs in literature compared to our DFT calculations (black line), and experiments from literature
(circles). (b) Thermal conductivity calculated using the Boltzmann transport equation (BTE) with relaxation time approximation (RTA) for the same 10 potentials
compared to our DFT calculations (black line), and experiments from literature (circles and squares). The purple dashed line represents +/- 15% error with respect to
DFT, showing that many potentials fall far outside this range. See SI for all calculation details. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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inclusion of interactions from distant atoms. For example, c-Si requires
interactions out to the 8th NN shell, which contains 98 neighbors, for
the dispersion to converge [41]. Evaluating this many interactions for a
complicated many-body potential would be very expensive. However,
the key point here, which can be exploited for speed and reduced
computational expense, is that such long ranged interactions are only
needed for the harmonic portion of the potential, which can be written
in terms of atom pairs. The anharmonic portion of the PES, on the other
hand, usually only needs to include 2nd or 3rd NN shells, which contain
much fewer atoms. This then naturally leads to using a separable ap-
proach to describe the PES, which we describe herein.

2. The failure of traditional potentials.

To clearly delineate what is meant by the harmonic and anharmonic
parts of the PES, we first Taylor expand the system’s potential energy E
about the equilibrium atomic displacements, ui

α for each atom i and
Cartesian direction α, to yield what we will term herein, the Taylor
expansion potential (TEP),
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constants (IFC3s), account for the anharmonicity in the PES. Obtaining
the IFCs by fitting the TEP to DFT has been known to result in a TEP
that accurately predicts forces [39], harmonic properties such as mode
frequencies [50], and anharmonic properties arising from mode-mode
interactions. [51] Thus, the TEP functional form is the IAP that in
principle solves the problem at hand, since it evaluates very fast.
However, there is an important problem that arises when attempting to
use the TEP to run a MD simulation, namely stability.

Here, in using the term “stability”, what is meant is the ability for
the energy in a MD simulation to be conserved, and for the dynamics to
give rise to stable vibrations of the atoms around their equilibrium sites
when simulating at a temperature below the material’s melting/sub-
limation/decomposition temperature. When IAPs such as the TEP ex-
hibit instability, it is often the case that the energy is not properly
conserved in a microcanonical ensemble, and the temperature quickly
rises causing the atoms to deviate far from their equilibrium sites, often
flying apart in space – effectively turning into a gas. For example,

Murakami et al. showed that the anharmonic TEP yields accurate
thermal conductivity in MD simulations, but also noted that dynamical
instability of the TEP prohibited simulations at high temperatures [52].
This issue of instability when using the TEP to perform MD simulations
has been noted in several reports in the literature, [50,52,53] but it has
not been clear why this problem arises.

To realize the methodological advance we present herein, we must
first appreciate why traditional IAPs are often so inaccurate. Upon in-
spection of the long ranged IFC2s for an example material such as c-Si,
it was realized that there is an inherent limitation in modelling long-
range interatomic interactions [54], when using only the radial distance
between pairs of atoms as a geometrical descriptor, as traditional long-
range IAPs do. It should be noted that the exclusive usage of radial
descriptors, namely the radial distance rij between two different atoms
label i and j, is the most commonly employed descriptor for IAPs (e.g.,
Lennard-Jones, Coulomb, Morse, etc.). Furthermore, it is the usage of
this simple descriptor that enables such potentials to be evaluated
quickly, even for long ranged interactions. It has been long recognized
that purely radial descriptions are incapable of stabilizing many ma-
terials, such as covalently bonded semiconductors, and this is what
prompted the invention of more complex IAPs with 3-body interactions
that utilize the angles between three atoms θijk as a supplementary
descriptor. However, the computational expense associated with in-
cluding 3-body interactions is substantial and as a result, such IAPs are
often truncated to only describe 1st or 2nd NN. This is because ex-
tending a 3-body potential to include interactions out to 8th NN, for
example, would become cost prohibitive, and as a result, long ranged
interactions in IAPs typically only employ one of the faster rij pair-based
functional forms previously mentioned.

The central issue is that a using a purely radial descriptor for long
ranged interactions does not provide enough flexibility to describe
unique and uncoupled IFC2s in all three Cartesian directions. This is
because the IFC2s of a radial potential are all coupled via the radial
coordinate, resulting in an implicit assumption of radial symmetry in
the interatomic forces, as is conceptually illustrated in Fig. 2. It is also
important to note that this limitation exists regardless of the para-
meterization and is therefore intrinsic to the functional form itself; i.e.,
radial potentials cannot properly capture the forces and IFCs, especially
in covalent solids [38]; a mathematical proof of this limitation is given
in the SI.

This limitation was also previously realized [41] by exhaustive ge-
netic algorithm searches for parameterizing conventional IAPs to match
IFC2s; despite the low error in forces between IAPs and DFT, no IAPs

Fig. 2. (a) Equilibrium positions of two atoms (Atom 1 and Atom 2) in the [001] plane of crystalline silicon (c-Si) as a model example of how radial potentials fail to
properly capture interatomic forces. (b) Force magnitude on Atom 1 as Atom 2 is moved in the [001] plane, calculated via a radial Morse potential. (c) Force
magnitude on Atom 1 as Atom 2 is moved in the [001] plane, calculated via DFT force constants. The potential force surfaces calculated via the radial potential and
DFT force constants clearly exhibit different shapes, as the radial potential is forced to have zero force along the arc of equilibrium distance, therefore no para-
meterization of the radial potential will result in a PES that matches that of DFT.
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were able to accurately reproduce the vibrational frequencies. These
previous attempts to fit traditional IAPs to long-range IFC2s involved
parameterizing long-range interactions that scale exclusively with the
interatomic radial distance r , such as −r 1, −r 6, and −r 8 for the Coulomb
[55], van der Waals [56], and Born [57] potentials, respectively; it was
identified that the long-range IFC2s could not be reproduced regardless
of parameterization using these radial IAPs [41].

As compared to purely radial descriptions, the harmonic part of the
TEP in Equation (1) possesses all of the flexibility needed for capturing
the IFC2s, because its parameters are the IFC2s themselves. The pro-
blem, however, is with its instability when running MD simulations.
[50,52,58] Upon further examination of the TEP functional form itself,
it was realized that, apart from usage of a special set of IFC2s that can
satisfy the acoustic sum rule, it is in general a translationally variant
functional form. It is known that an IAP must exhibit translational in-
variance in order for it to conserve energy [59], and thus it was sus-
pected that the origin of the instability with the TEP was due to the fact
that it is written in a way that references a fixed point in space (i.e., the
equilibrium site for each atom). Thus, from a conceptual standpoint, if
one were to translate an entire crystal, none of the relative positions
between the atoms would change, so there shouldn’t be any increase in
energy in the system or forces. However, with the TEP, there will be an
increase in energy and a restoring force back to the reference locations
in the system, since it references a fixed point in space for every atom.
There is nonetheless an exception to this, which is if the IFC2s are
chosen in such a way that all terms would cancel upon a translation,
thereby keeping the total energy fixed, regardless of a translation. This
exception is most often referred to as the need to satisfy the “acoustic
sum rule” [60]. However, we have found that it only seems to solve the
instability issue if it is exactly satisfied (i.e., the residual of the acoustic
sum must be extremely small – e.g., near machine precision).

In light of this issue, we implemented a more robust solution, which
is to instead rewrite the 2nd order term in the TEP in terms of the
relative coordinates between the atoms, describing atomic geometry
with relative displacements = −u u uij

α
i
α

j
α instead. In doing so, the “self-

interaction” term goes away, and the energy only deviates from its
minimum value when there is a relative motion between atoms. In this
way the functional form itself now exhibits translational invariance by
construction. This is important because this translationally invariant
form of the TEP (i.e., henceforth referred to as TITEP) is intrinsically
stable and can result in stable MD, even if the acoustic sum rule is not
strictly satisfied. Thus, it is preferred because it provides more flexible
options for how one can model the anharmonicity.

Using TITEP then solves the problem of correctly describing the
harmonic portion of the PES in a way that is computationally in-
expensive i.e., on the order of Tersoff, even when interactions extend
out to 8th neighbors. The remaining challenge is then describing the
anharmonicity, as the number of unique IFC3s can outweigh the
number of IFC2s, thus requiring a more elaborate/complex description
as compared to the harmonic PES. For example, in c-Si the number of
unique IFC2s (8th neighbor cutoff) and IFC3s (2nd neighbor cutoff) are
32 and 36 respectively, but for wurtzite GaN they are 237 (4th neighbor
cutoff) and 804 (2nd neighbor cutoff) respectively. Thus, it can be
challenging to reproduce all the IFC3s with traditional IAPs that have
far fewer free parameters than there are unique IFC3s. This then led to
the second important insight and central advance of this work, namely
we hypothesized that to correctly reproduce a property such as thermal
conductivity, there is a subset of IFC3s that are most important to get
correct – namely the largest IFC3s are the most important, as will be
later shown when applying our method to GaN. This hypothesis was
sparked by the prior work [41], which showed that traditional short-
range IAPs can reproduce IFC3s with enough accuracy to predict
thermal conductivity within 10% error of DFT. We therefore opted to
represent the anharmonic parts of the PES utilizing a relatively short-
range (e.g., truncated to 2nd nearest neighbors) IAP to capture the
anharmonic IFCs, in combination with TITEP to represent the 2nd order

IFCs for longer ranged interactions. Such a potential takes the form,

∑ ∑= +E ϕ u u E
ij αβ

ij
αβ

ij
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where the first term on the right side is the TITEP with new IFCs ϕij
αβ

related to the TEP IFCs by = −ϕΦij
αβ

ij
αβand Eanharmonic is a short-range

analytical anharmonic potential. The anharmonic part of Equation (2)
may take any form (e.g., Morse, neural network potentials, etc.). We
note that one may also write higher order terms of the TEP in a
translationally invariant form. However, instability issues may still
arise since the divergence to negative infinity of the 3rd order potential
energy surface has been suspected as another cause of stability [52],
and it is difficult to obtain higher order force constants [58]. since
unlike the 2nd order constants, there is no simple or obvious mathe-
matical relation between them and their translationally variant coun-
terparts.

The potential in Equation (2) relieves the difficulties associated with
using a single complex IAP with many-body descriptors to capture both
the harmonic and anharmonic aspects of the PES out to a large cut-off.
This approach instead allows the harmonic TITEP to focus on the pre-
dominant harmonic force contributions that often extend beyond 5th
nearest neighbors, while the anharmonic terms focus solely on re-
producing the short ranged more complex interactions. One could
simply use an anharmonic TEP in place of Eanharmonic, but as previously
noted, there are issues with stability and there is also a daunting fitting
problem of obtaining all the unique anharmonic IFCs required for si-
multaneous stability and accuracy [52]. Recent work in compressed
sensing [58] seeks to alleviate this issue, but our approach of using a
general analytic or machine learned form of Eanharmonic is potentially a
simpler alternative or something that can be used in conjunction with
compressed sensing. It should be noted that the addition of Eanharmonic

can in general also change the harmonic contributions to the force.
Therefore, one must modify the TITEP IFC2s in Equation (2) so that the
addition of Eanharmonic IFC2s and TITEP IFC2s yields the correct total
IFC2s, noting that IFCs are additive (Note: a more detailed description
of this procedure is described in the Methods section). Another ad-
vantage of this approach lies in the fact that Eanharmonic is often an in-
finitely differentiable function (e.g. some empirical or machine learned
potential), and thus maintains the possibility of describing anharmo-
nicity to full order.

3. Application of the new method: The example of crystalline
silicon.

To test the aforementioned approach, we applied the functional
form in Equation (2), first to c-Si. Previous work [41] found that a
simple Morse + 3-body angle potential is enough for accurately mod-
elling anharmonicity in c-Si. Therefore, Eanharmonic was chosen to be a
Morse + 3-body angle potential of the form

∑ ∑ ∑= − + −− −

=

E D e k θ θ[1 ] ( )anharmonic
ij

ij
α r r

a

A

ijk
a ijk ijk ijk

a( ) 2

2
,

0ij ij rij
0

(3)

where Dij and αij are Morse fitting parameters for the ijpair with equi-
librium bond length rij

0, ka ijk, is a fitting parameter for the ijk triplet with
equilibrium angle θijk

0 and angle expansion exponent a, where the
number of terms A in the angle expansion is chosen by the user. It is
important to note here that we define unique interactions in the sum of
Equation (3) for every pair or triplet, thus increasing the flexibility of
this anharmonic potential. We also take advantage of structural sym-
metry by declaring identical distances or angles between identical types
of atoms to be governed by the same potential parameters. Equation (3)
was chosen to have a cutoff out to 2nd NN since anharmonic interac-
tions out to 2nd NN are important for predicting thermal conductivity
in c-Si [39]. The angular expansion in one of our potentials went out to

=A 2, and is termed the Morse + 3-body harmonic (M3H) potential,
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while the other potential included more anharmonicity out to =A 4,
and was termed the M3A potential. The TEP + M3H and TEP + M3A
potentials were then parameterized with the POPS program [41] (i.e.,
using a genetic algorithm) to match DFT forces, IFC2s, and IFC3s. More
details pertaining to the fitting procedure and DFT details are provided
in the Methods section. The total force, IFC2, and IFC3 mean percent
errors (MPE) and weighted mean percent errors (WMPE) of the re-
sulting IAPs are compared to 10 commonly cited potentials in literature
and are shown in Table 1 (note: the definition of errors is given in the
SI).

The spread of force errors in Table 1, ranges from about 3% to 50%.
Force errors of 50% have been shown to drastically differ in magnitude
and direction for any given snapshot of DFT calculated forces [41]. The
TITEP + M3H and TITEP + M3A IAPs outperform all other IAPs but
are only marginally better than GAP at reproducing the forces. This is
not surprising, since GAP has been shown to be a flexible functional
form capable of describing many situations and was trained to hundreds
of thousands of forces [37]. By training machine learned IAPs like GAP
only to the total forces, however, these IAPs fail to capture smaller
anharmonic components of the forces, which may only comprise<
10% of the total force in materials like c-Si, but are much more sen-
sitive and important for describing thermal conductivity. For IFC2 er-
rors, our TITEP +M3H and TITEP +M3A may seem high despite using
a supposedly exact description of the harmonic PES, the TITEP, but the
definition of mean percent error here causes the error to diverge if small
IFCs are not well described. We therefore use the WMPE to show that
our potentials perform much better at reproducing the large IFCs
compared to traditional potentials, and we will show that large IFC3s
may be most important in describing thermal transport in the next
section. The results for these TITEP + M3H and TITEP + M3A IAPs in
terms of phonon dispersion and thermal conductivity is shown in Fig. 3.

To the best of our knowledge, this level of agreement, with a 1%
thermal conductivity error from 100 K to 1000 K and near exact phonon
frequency predictions, has never been achieved before with an IAP for
c-Si. Furthermore, the computational cost of these new c-Si potentials
are on the order of traditional potentials like Tersoff (see the SI for
details), which is their major advantage over a machine learned po-
tential like GAP.

Despite its simplicity, the anharmonic potential of Equation (3)
works well for c-Si since this system contains only 32 unique IFC3s, and
the Morse + 3-body angle potential out to 2nd neighbors contained 30
fitting parameters; reproduction of the IFC3s was therefore manageable
in terms of the number of unknowns and fitting parameters. More
complex materials with less symmetry in the lattice, however, contain
more IFC3s and therefore require more flexibility and fitting parameters
for the description of anharmonicity. Equation (3) therefore fails to
capture anharmonicity in materials with more complex structure, such
as wurtzite GaN, which has 804 unique IFC3s. As a result, no accurate
IAP has ever been made for thermal transport in GaN, despite its great
technological importance, and the preeminence of the thermal bottle-
neck in wide band gap electronics.

4. Modeling thermal vibrations in wurtzite GaN

Wurtzite GaN, with 804 IFC3s, requires more flexibility to describe

the anharmonicity than Equation (3) can offer. We confirmed this with
exhaustive genetic algorithm fits of a Morse + 3-body potential out to
2nd nearest neighbors, containing 136 fitting parameters, and the IFC3s
could not be matched. Our alternative solution for this situation was to
use a more flexible machine learned spectral neighbor analysis poten-
tial (SNAP) [61] to describe only the anharmonic part of the force,
while the TITEP describes the known harmonic part. Here, it is im-
portant to emphasize that we trained SNAP only to the anharmonic part
of the force, obtained by subtracting the harmonic force from the total
force. This restricts SNAP to only needing a cut-off out to 2nd NN, the
cutoff required to capture the relevant IFC3s for thermal transport in
GaN, as opposed to a long-ranged version (i.e., 8th NN), if SNAP were to
be used to capture the harmonic forces as well. This is important be-
cause it keeps the computational cost low, as an 8th nearest neighbor
SNAP potential for c-Si would be 4 orders of magnitude slower than
traditional IAPs like Tersoff, as shown in Fig. 4.

Conversely, a 2nd NN SNAP IAP is only 2 orders of magnitude
slower than Tersoff. Thus, the usage of TITEP + 2nd NN SNAP pre-
serves accuracy with respect to the dispersion yet saves 2 orders of
magnitude in computational cost compared to a longer ranged SNAP.

For GaN, the total potential energy is still given by Equation (2),
except that the anharmonic potential is replaced by SNAP with 56 fit-
ting parameters for each atomic species (gallium and nitrogen).
Training this potential to 71 GaN configurations resulted in a 7% force
error for GaN. Most of this force agreement comes from harmonic
forces, resulting in excellent phonon dispersion calculations shown in
Fig. 5. We note here that our DFT results fail to exactly match experi-
mental values, and we attribute this to the fact that polar materials like
GaN require ad-hoc corrections to dispersion via Born effective charges
[62]. While the DFT training set may always be optimized further, the
focus here is to show that the phonon potential exactly reproduces the
DFT phonon dispersion.

In addition to this excellent agreement with ab initio harmonic be-
havior, our GaN IAP also reproduces the anharmonic interactions de-
cently. This is exhibited by the<~ 15% thermal conductivity error
across a wide range of temperatures, in both in-plane (perpendicular to
the c-axis) and cross-plane (parallel to c-axis) directions, as shown in
Fig. 6.

These thermal conductivity results verify that the SNAP anharmonic
potential provides reasonable agreement with the ab initio description
of the anharmonic PES, particularly whatever is necessary to describe
thermal conductivity.

Some disagreement in thermal conductivity seems reasonable for
this situation, since our anharmonic SNAP potential contained only 112
fitting parameters, while there are 950 unique IFC3s for this system out
to 2nd nearest neighbors. We therefore cannot expect to capture all
IFC3s exactly, and indeed the total IFC3 MPE was 45%, and the
weighted MPE was 9.6%. Fig. 7 shows the direct comparison between
the IAP and DFT IFC3s. Our 112 parameter SNAP captured the top 10%
largest IFC3s i.e., by magnitude, to within 10% error. What is also
shown in Fig. 7, are plots of the percent error for each IFC3 as a function
of its reference DFT magnitude.

Fig. 7 shows that our IAP captures the top 10% largest IFC3s
with ~ 10% error, and the general trend is that smaller IFC3s are more
difficult to capture. This is because the training procedure for the

Table 1
Force, IFC2, and IFC3 MPE and WMPE for 10 commonly cited potentials in literature compared to the potentials developed in this work.

Tersoff 1988
[28]

Tersoff 1989
[29]

Tersoff 1990
[30]

Tersoff 2007
[32]

SW [31] SW 2012
[33]

EDIP 1998
[34]

EDIP 2012
[35]

REAX [36] GAP [37] TITEP+M3H TITEP+M3A

Force MPE 24.1 18.8 18.9 18.8 36.5 13.4 52.1 48.6 46.1 5.9 2.94 2.88
IFC2 MPE 91.2 88.8 76.5 90.8 87.9 83.3 83.9 86.3 85.1 99.6 39.9 10.5
IFC2 WMPE 1.4 1.4 1.4 1.4 3.6 0.46 5.7 5.1 4.9 0.19 0.048 4.4E-3
IFC3 MPE 130.7 338.7 400.1 335.5 210.9 202.1 358.9 391.8 176.9 805.2 80.3 64.2
IFC3 WMPE 10.7 11.7 12.5 11.6 10.3 10.9 32.9 57.1 6.8 24.0 0.32 0.29
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anharmonic SNAP potential includes only total anharmonic forces, and
thus it is biased towards reproducing the largest contributions to the
anharmonic forces. As a result, the training procedure knows virtually
nothing about the smaller components of these forces, which arise from
the smaller IFC3s. The level of IFC3 agreement we obtained seems
sufficient for modelling thermal conductivity within 15%, and this
could presumably be improved if the IFC3s were explicitly included in
the SNAP fitting process. Nonetheless, these results suggest that the
largest IFC3s are most important for predicting thermal transport.
These results furthermore show that the general functional form of
Equation (2) can accurately describe thermal vibrations/normal modes
and their interactions which result in thermal conductivity, provided
that the anharmonic portion possesses enough flexibility to capture the
anharmonicity, whose complexity is determined by the number of

unique anharmonic IFCs. We note that the general form of Eanharmonic in
Equation (2) is often infinitely differentiable and therefore contains all
orders of anharmonicity, representing another advantage over the tra-
ditional anharmonic TEP, although the accuracy for higher order an-
harmonicity with our method will be investigated in future work.

5. Conclusions

To summarize, we showed the utility of designing IAPs according to
Equation (2), where separate functional forms are used to describe the
harmonic and anharmonic parts of the PES. This separation is useful
because the number of atoms (i.e., the length of the cut-off) and

Fig. 3. (a) Phonon dispersion curves and (b) BTE relaxation time approximation (RTA) thermal conductivity calculation using the long-range TITEP combined with
short-range Morse + 3-body angular potentials (dashed lines) compared to DFT (black line) and neutron scattering experiments [38] (squares) and thermal con-
ductivity measurements (circles and squares).

Fig. 4. Computational expense (seconds per timestep per atom per core) for a
variety of potentials and DFT, normalized by Tersoff. For our c-Si potential,
TITEP + M3H, we show only an order of magnitude increase in cost compared
to Tersoff, which is still orders of magnitude lower than other modern poten-
tials, but unparalleled accuracy in modelling harmonic and anharmonic vi-
brations.

Fig. 5. GaN phonon dispersion calculations using the SNAP + TITEP potential
(red line) compared to DFT (black line), experiments [63], and Tersoff [64] and
SW [65] potentials from literature. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this
article.)

A. Rohskopf, et al. Computational Materials Science 184 (2020) 109884

6



necessary complexity differs significantly for each portion of the PES.
The harmonic portion can be exactly captured by a simple form, re-
ferred to herein as the TITEP, which solves the stability issue by re-
writing the IAP in a form where it is intrinsically translationally in-
variant – regardless of parameterization. The use of TITEP solves the
problem of correctly describing the long-ranged interactions, and does
so with minimal computational expense, which is a major advantage
over using orders of magnitude more expensive and complex many-
body potentials to achieve the same level of accuracy. The separation
also allows an anharmonic potential to focus on the anharmonicity,
which is often difficult and complex for a single potential to capture
when training to the total force since the harmonic contributions
dominate the force magnitude. Consequently, the methodology pre-
sented yields accurate IAPs that can be used for describing atomic vi-
brations and performing stable MD simulations of c-Si and GaN, which
are two highly important and technologically relevant materials.

This new approach sets a new foundation upon which IAPs that deal
with more complex atomic environments can be built upon, such as
systems with defects, amorphous materials, interfaces, dopants, alloys
and nanostructures. For these more complex systems, each atom’s IFC2
may be stored in memory for use in the TITEP, while a flexible ma-
chined learned IAP such as SNAP can describe the anharmonicity in a
general and more easily transferable way. Using this method, the
functional form of Equation (2) is currently the most suitable for
modelling atomic vibrations and thermal transport with unparalleled
accuracy and computational speed. With this foundation, other phe-
nomena (e.g., chemical reactions, [8] mass/ion diffusion [9], and phase
changes10) that depend on or involve thermal vibrations can now be
described more accurately with predictive power.

Fig. 6. (a) GaN BTE RTA in-plane thermal conductivity calculations using our TITEP + SNAP potential (red line) compared to DFT calculations (black line),
experiments [66,67], and Tersoff [64] (grey dots) and SW [65] (blue dots) potentials from literature. The purple dashed lines are 15% error bars on DFT thermal
conductivity. (b) GaN BTE RTA cross-plane (parallel to c-axis) thermal conductivity calculations using our TITEP + SNAP potential (red line) compared to DFT
calculations (black line), experiments [68–70], and potentials from literature. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Fig. 7. (a) Comparison between DFT IFC3 values and IAP IFC3 values for our TITEP + SNAP potential compared to Tersoff [64] (grey circles) and SW [65] (blue
circles) potentials from literature. (b) Percent error of IFC3s by magnitude for wurtzite GaN. The bottom axis represents magnitude of DFT IFC3s, while the top axis is
the percent error between the IAP IFC3 and the DFT IFC3. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)
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6. Methods

Our methods of parameterizing IAPs using the general functional
form in Equation (2) is presented herein. We used to methods in this
paper – the first method, for c-Si, involves fitting Eanharmonic in Equation
(2) to the total DFT forces and/or force constants (we fit to 2nd and 3rd
order force constants for c-Si), then adding a corrected harmonic Taylor
expansion on top of this potential. The second method, used for GaN,
involves fitting Eanharmonic to the anharmonic DFT forces obtained by
subtracting the harmonic forces. The first method (for c-Si) is described
as follows:

1. Perform DFT calculations to obtain training data in the form of
forces on atoms, across many configurations.

2. Fit an anharmonic potential Eanharmonic to the total DFT forces and/or
force constants (Note: We used 2nd and 3rd order force constants in
making the c-Si potential).

3. The fitted anharmonic potential will contain some errors in 2nd
order force constants; calculate the Eanharmonic IFC2s, Φanharmonic, and
obtain the corrected IFC2s = −Φ Φ Φcorrected DFT anharmonic.

4. Use Φcorrected for the IFC2s in the functional form of Equation (2).

The second method, that we used for GaN (that you read in the
Methods section), was as follows:

1. Perform DFT calculations to obtain training data in the form of
forces on atoms, across many configurations.

2. Fit a 2nd order TEP to obtain the DFT IFC2s, ΦDFT .
3. Calculate the anharmonic DFT forces by subtracting the harmonic

force, calculated with the IFC2s obtained in Step 2, from the total
DFT force.

4. Fit the anharmonic potential Eanharmonic to the anharmonic forces
obtained in Step 3.

5. The fitted anharmonic potential may still have its own IFC2s due to
the unavoidable harmonic curvature of many potentials (e.g., the
built-in well of the Morse potential). Calculate the Eanharmonic IFC2s,
Φanharmonic, and obtain the corrected IFC2s

= −Φ Φ Φcorrected DFT anharmonic.
6. Use Φcorrected for the IFC2s in the functional form of Equation (2).

Obtaining the harmonic IFC2s in all scenarios was achieved by fit-
ting a harmonic TEP to the forces calculated from a potential or DFT,
using the least squares optimization procedure in the Alamode program
[39]. Parameterizing the anharmonic potential was performed with the
POPs [41] program in the case of the Morse and 3-body potentials for c-
Si. For the GaN SNAP potential, we performed least squares fitting to
train SNAP against DFT forces, as described in literature [61]. We
should note that when obtaining the 2nd order IFCs, there will be some
implicit temperature dependence since they are obtained via displacing
atoms. This does not seem to affect agreement with DFT dispersion
curves, but the temperature effect on IFCs should be noted [50]; one
may remedy this issue by using a lookup table in the potential asso-
ciating a given set of IFCs for a particular temperature in a MD simu-
lation, for example. In the first method (for c-Si), the anharmonic IFCs
were obtained by fitting force–displacement data from the potential to a
TEP via the Alamode program [39]. All other anharmonic IFCs in this
paper, such as Fig. 7, were also obtained via fitting a TEP to for-
ce–displacement data from the potential.
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