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Abstract 

 We report the first ever accurate theoretical prediction of thermal conductance of any 

material interface. Thermal interfacial conductance of aluminum (Al)-sapphire (α-Al2O3) interface 

along crystal directions (111) Al || (0001) Al2O3 for temperature ranging from 50-500 K is 

calculated using two fundamentally different methods: interfacial conductance modal analysis 

(ICMA) and atomistic green function (AGF). While AGF overpredicts interfacial conductance, 

both the quantitative and qualitative predictions of ICMA are exceptional when compared with the 

time-domain thermoreflectance (TDTR) experimental data. The mean error in ICMA results are 

below 5%. We believe that the accurate theoretical prediction by ICMA can be credited to a more 

fundamental treatment of the interfacial heat flux in contrast to that of the phonon gas model 

(PGM) and inclusion of anharmonicity to full order. ICMA also gives the eigen mode level details 

revealing the nanoscale picture of heat transport: more than 90% of conductance is contributed by 

the cross correlation (interaction) between partially extended modes of Al and Al2O3 and the 

remaining is attributed to interfacial modes. This is a major milestone in combustion heat transfer 

research enabling materials scientists to rationally design propellant architectures to serve long-

distance propulsion missions. 

  



1. Introduction 

 Understanding the nanoscale thermal behavior of materials is crucial to myriad engineering 

applications like space propulsion,1-4 electronics,5 and biomedical engineering.6 In this century of 

space race, when mars and beyond mars propulsion missions are not distant realities, recently 

developed aluminum-based nano-structured energetic composites2,7 seem promising as propellant 

materials. Heat conduction to unburnt reactants is the key to efficient combustion of such 

materials. For a typical propellant, the interface between the metallic fuel particle and its oxide 

layer offers high resistance to heat flow, subsequently limiting heat conduction rates. This subdues 

their performance in propulsion missions eventually impeding their reliability. In this regard, 

understanding the physical mechanisms that lead to this high interfacial resistance is of significant 

value. Interfacial heat transport can be characterized by thermal interfacial conductance (TIC) 

(denoted by G), which is the inverse of thermal resistance. G is the constant of proportionality in 

the equation that relates heat flow (Q) at the interface of two materials to the temperature drop 

(ΔT) at the interface (Q = GΔT). A fundamental understanding of the governing mechanisms of G 

enables us to reengineer interfaces by designing new architectures, doping, functionalizing, etc. to 

improve interfacial thermal transport. 

 To understand and quantify G, one may seek experimental measurements, theory-based 

predictive models, or a combination of those. Time-domain thermoreflectance (TDTR) method, 

an optical-pump probe technique, is the most widely used experimental method.8-11 A typical 

TDTR experiment measures the total conductance but neither resolves the modal contributions nor 

elucidates the governing mechanisms. Sometimes, merely due to the low thermal conductivity of 

the constituent sides of the interface, the measurement is incapable of measuring G because of the 

low sensitivity to the interfacial resistance. In addition, experimental methods can get challenging 



and expensive especially from a standpoint of making clean and defect-free interfaces by epitaxial 

growth, and achieving high temperatures and/or pressures. Moreover, the results are sensitive to 

experimental conditions thus challenging reproducibility.  

 Theoretical approaches, in contrast to experiments, are highly reproducible, much less 

expensive, and can be performed over wide range of temperatures and pressures. Nevertheless, 

theoretical models should be thoroughly benchmarked with experimental results before being 

applied to any practical application. To model interfacial heat transfer, several formalisms/models 

exist: acoustic mismatch model (AMM),12,13 diffuse mismatch model (DMM),14-16 atomistic green 

function (AGF),17-19 wave packet method (WP),20-23 harmonic lattice dynamics (LD) based 

approach,24,25 and frequency-domain perfectly matched (FD-PML) method26,27. All of them are 

based on the phonon-gas model (PGM). According to PGM, interfacial conductance is defined via 

Landauer formalism28 as: 
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where the summation is performed over different polarizations denoted by pA and allowed wave 

vectors kx,y,z in material A; VA is the volume of material A, vz,A is the phonon group velocity normal 

to the interface,   denotes the phonon energy wherein is Planck’s constant divided by 2π and 

ω is the phonon frequency, τ is the phonon transmission probability, f is the phonon distribution 

function (Bose-Einstein distribution). The different PGM based formalisms differ based on how 

each method calculates the transmission probability.  For calculating the thermal conductivity of 

different materials, PGM based formalisms have achieved excellent agreement with experimental 

measurements [ref]. When it comes to G, however, no general or consistent agreement between 

(1) 



theory and experiment has ever been reported. Figure 1 compares the predictions of various 

theoretical formalisms (vertical axis) with the experimentally measured values (horizontal axis). 
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Fig.1. Comparison of theoretical predictions of thermal interfacial conductance, G across 

different interfaces with corresponding experimentally measured values. For each 



interface, each point represents a calculation/measurement at a different temperature. Each 

panel represents a different G range. The dashed lines represent the percent error associated 

with the theoretical predictions. The examined interfaces have references as follows: 

TiN/MgO,29 TiN/Al2O3,29 Al/Si with/without oxide layer,30 Al/GaSb,31 GaSb/GaAs,31 

Au/Diamond,32 Bi/Diamond,9 and Pb/Diamond.9 Modified DMM referenced in the legend 

was proposed as a variation of DMM to predict TIC across interfaces with severe chemical 

and structural changes around the interface.33,34 JFDMM is a variation of DMM, where the 

altered phonon frequencies in the interface region is also included in the calculations.35 

  

It is apparent from Fig.1 that all the PGM models suffer significant qualitative and quantitative 

uncertainty in their predictions. Note that in the Landauer formalism (eq. 1), group velocity, v of 

all vibrational modes need to be calculated to evaluate G. Calculation of v is only possible for 

purely crystalline solids. When PGM is applied to calculate interfacial conductance, it assumes the 

interface to be merely a break in symmetry of a crystal and adopts the same treatment used in 

perfect crystals. Such an assumption in applying PGM to systems with break in symmetry such as 

interfaces and disordered materials like amorphous materials, alloys, and polymers is highly 

questionable, since a large population of the vibrational modes in these systems are non-

propagating and localized, for which a group velocity cannot be defined. In addition, PGM 

formalisms do not include the intrinsic anharmonicity of vibrations arising from the differences in 

modal frequencies, which is another important factor that affects heat conduction. Although Mingo 

has shown that, in principle, anharmonicity can be included, this has been neither widely adopted 

nor applied to any realistic interface. Finally, from eq. (1), it is clear that PGM defines G by using 

the properties of only one of the two materials forming the interface and the transmission 



probability, τ. AMM and DMM methods calculate transmission probability under the assumption 

of purely specular and purely diffuse scattering of phonons respectively at the interface, which are 

severely restrictive whatsoever. Although there has been many improvements made to these 

models from a standpoint of calculating transmission probability, none of them could resolve 

atomic level detail of interface quality like imperfections, defects, interatomic diffusion, etc.  

 Among the PGM based models, AGF formalism seems superior as it is capable of including 

atomic level details and quantum effects. AGF utilizes the harmonic force constants (FC) estimated 

by means of atomic forces calculated through first principle methods like density functional theory 

(DFT) or by empirical interatomic potentials to estimate the transmission function. In AGF 

method, for contact area A, G is given by,  
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where the phonon transmission τ at frequency ω is calculated as the trace over the Green’s function 

of the interface and its coupling terms between the bulk material on either end (explained in 

supplementary material). Although AGF, in theory, combines atomic-scale fidelity with an 

asymptotic treatment of the bulk material, to our knowledge, no good agreement with experimental 

measurements have been reported till date. Note also that AGF is intrinsically unable to achieve 

mode-level details of conduction. Although one may argue that mode-level details can be extracted 

from the interatomic force constants, since AGF calculates contributions only from the modes 

existing in the bulk material, it is uncertain whether they are the actual modes present in the 

interfacial system. The contributions from individual modes are particularly important in materials 

where all the eigen modes may not be propagating. The non-propagating modes could be localized 

or diffusive in nature. Knowing the contributions of specific eigen modes facilitates rational design 

(2) 



of materials by engineering certain features to target certain group of modes to either inhibit or 

enhance their role. Therefore, it is presumable that, irrespective of the underlying theory, emphasis 

should be given on describing the contributions from the actual modes that exist in the system.  

 Unequivocally, there is a major gap in the understanding of interfacial heat transport.  

Considering the inadequacies in PGM, we seek an alternative view of interfacial heat conduction 

based on the fluctuation dissipation theorem wherein the modal contributions to transport are 

assessed by the degree to which they are correlated, rather than the degree to which they are 

scattered. To serve the purpose, the recently reported interfacial conductance modal analysis 

(ICMA) formalism36 based on the fluctuation-dissipation theorem and lattice dynamics looks 

promising. In the ICMA formalism, the instantaneous energy transfer across an interface of 

material A and B can be given as:  
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Here, QAB is the instantaneous energy transfer across the interface of material A and B; p, H, and 

m represent the momentum, Hamiltonian, and mass of atoms i and j respectively.  From this 

relation, the conductance can be calculated by the time integration of correlation of autocorrelation 

of the equilibrium fluctuations of the heat flow as: 
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Since ICMA is implemented in classical molecular dynamics (MD) framework, it is capable of 

full inclusion of anharmonic contributions to the interfacial heat transfer by all types of vibrational 

modes including the localized interfacial modes. Most importantly, ICMA can resolve the modal 

heat flux nQ (i.e. n

n

Q Q ) yielding the modal contribution to conductance, nG (i.e. n

n

G G ) 

(3) 
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by utilizing the input eigen vector basis set given as input (detailed formalism given in 

supplementary material).  

 In this work, we report the first ever accurate theoretical prediction of thermal conductance 

for any interface using ICMA. We implement both ICMA and AGF techniques independently to 

predict thermal conductance of aluminum (Al)-sapphire (α-Al2O3) interface for temperature 

ranging from 50-500 K and compare the results with each other and with experiments. Al/Al2O3 

interface is of high technological importance in space and underwater propulsion applications. 

Composite energetic materials synthesized with nanosized aluminum structures are promising 

high-energy density propellants. Quantifying Al/Al2O3 interfacial conductance is crucial in 

precise-modeling of combustion of these materials whose commercialization has so far been 

impeded by the apparent high thermal resistance. Results are also compared with DMM 

predictions to observe how results vary when purely diffuse scattering mechanism is assumed. 

Moreover, we also report the mode-level details obtained from ICMA, which gives the nanoscale 

picture of the modal interactions and thereby explaining the mechanisms governing interfacial heat 

transport.  

 

2. Simulation details 

2.1.Interfacial Conductance Modal Analysis (ICMA) 

 We used ICMA method in equilibrium molecular dynamics (EMD). A simulation cell size 

of ~19.2 nm in length having a cross sectional area of ~80 nm2 with 1260 atoms containing an 

interface with crystal directions (111) Al || (0001) Al2O3 representing the primary orientation in 

FCC metal-metal oxide (Medlin, pilania) interfaces is used for the simulations. The system length 

was chosen based on an initial size-dependency calculation, which suggested that a system size 



larger than ~18 nm yields a size independent G. To model atomic interactions, we have used the 

Streitz-Mintmire (SM) potential, a variable charge interatomic potential designed specifically for 

Al/Al2O3 interface, which explicitly includes variable charge transfer between anions and cations 

in the material. SM potential has been used to adequately describe the elastic properties, surface 

energies, and surface properties of sapphire in prior works. Here we show that SM potential is also 

able to accurately describe the phonon properties of the bulk of both materials (supplementary 

material), and is therefore suitable for ICMA calculations. 

 Firstly, the system was relaxed in isobaric-isothermal (NPT) ensemble at zero pressure for 

2 ns to relieve any internal stresses. After relaxation, the system was equilibrated in a canonical 

(NVT) ensemble at required temperature for another 2 ns. Following equilibration, the system was 

evolved in time under microcanonical ensemble (NVE) ensemble for 10 ns. Heat flux was recorded 

very 5 fs, which is found to be sufficiently low enough to resolve the heat current fluctuations in 

both the materials. In order to overcome the possible statistical uncertainty due to insufficient 

phase space averaging, 10 independent ensembles are considered for each temperature. All 

calculations were performed on Large-scale Atomic/Molecular Massively Parallel Simulator 

(LAMMPS) package using a time step size of 1 fs. To include the modal decomposition routine, 

the original SM potential in LAMMPS was modified to accept eigenvector basis set obtained from 

lattice dynamics (LD) calculations and to output modal contributions to heat current at required 

intervals. For performing lattice dynamics (LD) calculations, following the NVT equilibration, the 

system was gradually cooled to 0 K in microcanonical ensemble using Langevin thermostat. The 

system was then allowed to undergo relaxation at 0 K in NPT ensemble. The relaxed crystal was 

used as the input for LD calculations performed on General Utility Lattice Program (GULP) from 

which the eigen vectors of vibration for the structure were obtained. The auto- and cross-



correlations between the total and modal heat fluxes from ICMA routine were calculated to obtain 

the total G and modal contributions, respectively. 

 

2.2.Atomistic Green Function (AGF) 

 To ensure a fair comparison between AGF and ICMA, force constants used in AGF 

calculation were obtained from empirical LD calculations using the same Streitz-Mintmire 

potential used in ICMA calculations. In AGF method, the system consists of two bulk regions of 

aluminum and sapphire respectively, and an interface region of these two materials. For FC 

calculation, we used structures composed 36 and 60 atoms respectively to represent bulk structures 

of aluminum and sapphire, and 96 atoms for interface structure. LD calculations were performed 

using ALAMODE code. Several initial geometries with atoms displaced from their equilibrium 

coordinates were input to ALAMODE. To obtain empirical FC, ALAMODE was coupled with 

LAMMPS, and the SM potential was invoked to obtain forces acting on atoms corresponding to 

the displaced geometries. Based on the harmonic force constants obtained from SM potential, we 

solved eq. X-Y in the supplementary material to obtain phonon transmission and G.  

 

3. Results 

3.1.Total conductance, G 

 The total G values as a function of temperature obtained from various sources are 

summarized in Fig. 2. Results of our ICMA and AGF calculations are compared with the 

experimental results from three different sources11,32,37 as well as the DMM predictions.11 

Experimental data from 50-300 K are obtained from Stoner and Maris,32 whereas the experimental 



results for 300-480 K are obtained from Hopkins et al.37 Another set of experimental data and 

DMM calculations reported by Hopkins et al.11 are also overlaid for comparison. Experimental 

data above 480 K is not available.  

 

Fig. 2. Thermal interfacial conductance predicted by ICMA and AGF methods compared with 

experimental results and diffused-mismatch model (DMM) prediction 

 From Fig. 2, it can be seen that the ICMA results are in great agreement with experimental 

results for the entire range of temperature. The mean quantitative error in comparison with 

experiments is under 5% and the qualitative trend is also exceptional. Experimental results suggest 

a near-linearly increasing trend in G v/s T that is captured quite well by ICMA. As seen in Fig. 2, 

except for a slight proximity with Hopkins et al. experimental results below 150 K, DMM 

predictions are way above experimental results. This is because of the severely restrictive 

assumption on phonon scattering to be purely diffusive in nature. The green line represents the 

results of AGF calculations. It is quite evident that except for the bare accordance with the 

experimental result of Hopkins et al. at T = 450 K, AGF significantly over-predicts G from 50-450 

K. The temperature trend of G predicted by AGF is also not in agreement with experiments. AGF 

results steeply rise from 50-100 K and plateaus thereafter. At higher temperatures, G is nearly 
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constant; no temperature dependence is observed. We doubt the poor predictability of AGF is a 

consequence of two factors. Firstly, AGF does not take into account the intrinsic anharmonicity 

associated with the vibrational modes, which plays a vital role in heat conduction. Secondly, the 

only mechanism that the AGF accounts for, in evaluating the temperature dependence is the 

quantum (Bose-Einstein) correction applied to the modal calculations. This is different from ICMA 

in which we calculate conductance using classical MD followed by quantum correction at every 

single temperature, thereby circumventing the limiting assumptions of AGF in assessing 

temperature dependence. To examine these conjectures, a detailed analysis of modal anharmonic 

energy distribution and modal contribution to G is performed in the following sections. 

 

3.2. Anharmonicity 

In order to quantify anharmonicity and its ramifications on G prediction, we evaluate the 

anharmonic energy belonging to each mode of vibration in the interfacial system. In essence, 

harmonic and full potential energy of each eigen mode is calculated by the procedure previously 

reported by Gordiz and Henry [ref]. Harmonic energy, Ωi,n attributed to atom i by the nth eigen 

mode can be given as: 
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i n n i n i

m
X

N
 e e , and N is the total number of unit cells in the system, mi is the mass of 

atom i, and ,n ie is the eigenvector associated with atom i participating in eigen mode n. Utilizing 

the exact same displacements for a singly excited mode in the system, we can evaluate the total 

(5) 



potential energy for each atom in the system for that eigenmode, Φi,n. This is achieved by 

evaluating the total potential energy of the system as the summation over the individual atomic 

potential energies as:38,39  

,i

i

    

where Φ is the total potential energy and Φi is the potential energy assigned to atom i, such that all 

energy is equally partitioned amongst interacting pairs of atoms. For an eigenmode n, the 

difference between the total potential energy Φi,n and the harmonic potential energy Ωi,n associated 

with atom i equals the anharmonic portion of the energy,
,i n given by:  

, , ,i n i n i n  
 

By summing 
,i n  over atoms, we can inspect the anharmonic energy belonging to the 

vibrational modes in the system. This can then be used to better understand how modes and regions 

of atoms interact and ultimately will help to quantify its effect on transport. Figure 3(a) shows the 

mode level degree of anharmonicity by means of two representative plots: a) anharmonic energy 

normalized by kBT and b) G accumulation function normalized by total G, both at T = 300 K. From 

Fig. 3 (a), it can be seen that the normalized anharmonic energy clusters around zero for 

frequencies less than ~9 THz, which is approximately the maximum frequency of vibrations in the 

aluminum crystal, and severe anharmonic behavior is observed for frequencies > 9 THz. This 

knowledge may be used to roughly assess the fidelity of any theoretical model which assumes 

purely harmonic vibrations. In other words, if majority of modes fall below 9 THz, harmonic 

assumption to vibrational modes may be reasonable and AGF may, therefore, be expected to 

predict G with reasonable levels of accuracy.  

(6) 

(7) 



 

 

Figure 3 (a) Mode level distribution of anharmonic energy normalized by kBT clearly 

showing the increased anharmonic behavior of modes with frequency > 9 THz and b) 

Normalized conductance accumulation plots obtained from AGF and ICMA calculations 

clearly showing the inability of AGF to account for the intrinsic anharmonicity within the 

interfacial system, both at T=300 K. 

 

On further observing the normalized conductance accumulation function (G(ω)/G) as 

shown in Fig. 3(b), the effect of anharmonicity is clearly visible. AGF results accumulate by 

around 8 THz and stays constant thereafter. It is, therefore, unable to capture contributions from 

modes with frequencies greater than the highest modal frequency in aluminum. On the other hand, 

ICMA trails a steep rise until 8 THz followed by a reduced steepness until 10 THz then staying 

constant until 17.5 THz. The reduced steepness is because of the onset of anharmonic effects for 

modal frequencies > 9 THz. At this point, it is worthwhile looking at the distribution of different 
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types of modes in the system to assess whether ICMA results align well with experimental results 

for the right physical reasons. 

 

3.3.Modal Analysis 

 Phonon DOS of bulk aluminum and aluminum oxide, partial DOS, modal summation of 

TIC, and mode-mode correlations at 300 K is shown in Fig. 4 (a)-(d) respectively. Fig. 4 (a) shows 

the DOS of bulk materials computed from the Fourier transform of velocity autocorrelation 

function obtained from MD calculations. Partial DOS shown in Fig. 4 (b) are calculated from the 

eigenvector basis set obtained by lattice dynamics calculations. From the partial DOS, we can 

identify four types of modes based on their participation ratio as: i) extended modes, ii) partially 

extended modes, iii) isolated modes, and iii) interfacial modes. Extended modes are present at the 

interface, but majority of them is not at the interface, and are delocalized into both materials. 

Partially extended modes are also present at the interface, but majority of them are not present at 

the interface, and are localized on one side of the interface. Isolated modes exist far away from the 

interface while interfacial modes are localized vibrational modes which are majorly present at the 

interface. Figure 4(b) shows the dominance of partially extended modes in Al (< 9 THz) and Al2O3 

(<12 THz) and the negligible presence of extended modes (< 0.6 THz). A small percentage of 

modes (> 9 THz) are interfacial in nature whereas the remaining modes seem to be isolated.  

  

  



 

 

 

 

   

 

 

 

 

 

 

 

 

Fig. 3.  a) Bulk DOS of Al and Al2O3 obtained from the velocity autocorrelation function b) 

Partial DOS showing different types of modes, c) TIC accumulation (In this system, >90% of 
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the total conductance is contributed by partially extended modes on Al and Al2O3, and the 

extended modes below 12 THz, d) mode-mode correlation map at T = 300 K showing three 

distinguishable regions. Region 1 is mostly comprised of partially extended modes on Al and 

Al2O3; this region ends with the maximum frequency of partially extended modes and 

contributes >90% to TIC. Region 2 has almost negligible contribution to TIC and are mostly 

comprised of interfacial modes, which explains the reason behind their low contribution. The 

frequency range 17.5-22.5 THz, however, has a high density of partially extended and 

interfacial modes in Al2O3 co-existing that interact and contribute ~5% to TIC. 

 

 In Fig. 4(c) and (d), two distinguishable regions are marked as Region 1 and 2. Region 1 

is below 9 THz marking the peak frequency in Al. Region 2 comprises all frequencies above 9 

THz. In region 1, distinct regions of strong positive correlations are observed. Except below 0.6 

THz where extended modes are present, this region is dominated by the cross-correlation (CC) of 

partially extended modes of Al with that of Al2O3 reflecting as red regions in the correlation map. 

Considering the large population of states of partially extended modes of Al and that of Al2O3, this 

region of high CC is the major reason for the initial high slope of TIC accumulation until ~ 9 THz. 

After that, within region 1, 9-12 THz marks a narrow region of interaction between interfacial and 

partially extended modes of Al2O3, which due to a combined effect of weak correlations and low 

density, only gives a very shallow slope in TIC accumulation.  

 From 12-15.5 THz, interfacial modes, and the isolated and partially extended modes of 

Al2O3 co-exist. This frequency ranges in region 2 also shows a strong correlation. However, the 

very low density of these modes is a clear evidence of the small increment of G in this region. In 

region 2, the modal characteristics shifting drastically from strong positively to strong negatively 



correlated regions in effect canceling each other, maintain cumulative G constant until ~17.5 THz. 

From 17.5 THz to 22.5 THz, there are observable regions of strong correlation and a slight increase 

in the density of vibrational states. Especially around the diagonal, there is a strong observable 

positive correlation from the interaction between the interfacial modes. The combined effect is a 

jump in G accumulation in Fig. 4 (c) at around the same frequency i.e. 17.5 THz. In order to further 

gauge the role of each mode, it is important to obtain the contribution of each type of mode to DOS 

and G and the relative contribution of each mode to G i.e. G/DOS. 

 

Table 1. Contribution of different types of modes to partial DOS and G, and the percentage 

relative contribution of G to DOS  

Mode Type (%)DOS  (%)G  G DOS  

Extended 0.18 0.31 1.72 

Partially 

extended 

89.52 91.83 1.02 

Interfacial 9.31 7.80 0.84 

Isolated 0.90 0.06 0.07 

 

 

 Table 1 shows the population of each type of mode in partial DOS, and their contribution 

towards G. Also given is the percentage relative contribution of G to DOS to comprehend the 

significance of each type in conducting heat. The high density of partially extended modes in the 



region from frequency < 12 THz corresponding to 89.52% of DOS together constitute towards 

~92% of TIC. The G/DOS ratio of partially extended modes ~1 suggesting that the role of partially 

extended modes in G is justified by their presence in the partial DOS. In the remaining 10.5% 

modes, 9.31% is constituted by interfacial modes and under 1% by isolated modes. The percentage 

of extended modes in the system is only 0.18%. Considering the G/DOS value of 1.72, it is to be 

understood that there is a disproportionately high contribution to G from the extended modes for 

their relatively small presence in DOS. Therefore, we doubt that the presence of high concentration 

of extended modes is the reason for the apparent high G of cSi-cGe40 interfacial system reported 

in a prior work. We believe that for the Al/Al2O3 system, a major portion of G is contributed by 

partially extended modes, subsequently helping us achieve realistic predictions. In summary, 

ICMA has not only been able to provide an accurate theoretical prediction of interfacial 

conductance, but also capture the physical picture of modal interactions governing thermal 

transport. 

 

4. Conclusions   

 We have accurately predicted the thermal interfacial conductance (G) of the aluminum 

(Al)-sapphire (α-Al2O3) interface along the crystal directions (111) Al || (0001) Al2O3. We used 

two fundamentally different formalisms: interfacial conductance modal analysis (ICMA) and 

atomistic green function (AGF) method in the temperature range 50-500 K. While AGF 

overpredicts G, predictions of ICMA show great agreement with experimental results both 

quantitatively and qualitatively. This is for the first time ever in literature, a theoretical model has 

been able to predict thermal conductance of a realistic interface for a wide range of temperatures 

and achieve a conclusive experimental validation. ICMA formalism is clearly superior to all the 



PGM based models for its more fundamental treatment of the interfacial heat flux, its inclusion of 

full anharmoncity of vibrational modes, and for its ability to access to phonon mode level details. 

High thermal resistance of Al/Al2O3 interface has been a major impeding factor in the massive 

commercialization of nano-aluminum based energetic materials. These results are of vital 

importance to the heat transfer and space propulsion community; a major milestone in combustion 

heat transfer, which would enable mars propulsion and planet hopping a reality in the near future. 
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