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For many decades, phonon transport at interfaces has been interpreted in terms of phonons

impinging on an interface and subsequently transmitting a certain fraction of their energy into the

other material. It has also been largely assumed that when one joins two bulk materials, interfacial

phonon transport can be described in terms of the modes that exist in each material separately.

However, a new formalism for calculating the modal contributions to thermal interface conductance

with full inclusion of anharmonicity has been recently developed, which now offers a means for

checking the validity of this assumption. Here, we examine the assumption of using the bulk

materials’ modes to describe the interfacial transport. The results indicate that when two materials

are joined, a new set of vibrational modes are required to correctly describe the transport. As the

modes are analyzed, certain classifications emerge and some of the most important modes are

localized at the interface and can exhibit large conductance contributions that cannot be explained by

the current physical picture based on transmission probability. VC 2016 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4939207]

I. INTRODUCTION

The current and prevailing view point for describing

phonon transport at interfaces is based on the phonon gas

model (PGM), which treats phonons as gas particles that

impinge on an interface. It is then believed that when a pho-

non reaches the interface, there is a certain probability that

its energy will be transmitted, which is referred to as its

transmission probability. It is also almost ubiquitously

assumed that when two bulk materials are joined, the modes

of each material are largely unchanged, and the transport at

the interface can be described in terms of the modes that

would exist in each bulk material separately. A study by

Landry and McGaughey1 suggested that such an approach

exhibits agreement with the interface conductance calcu-

lated from non-equilibrium molecular dynamics (NEMD)

simulations and independent lattice dynamics based

approaches. However, although widely used,2–7 these ideas

have never actually been proven, i.e., by demonstrating

excellent agreement with experiments, as has been done

with first principles approaches to thermal conductivity.8,9

Thus, it is important to consider alternative perspectives

that might provide more accurate and complete descriptions

of the physics.

Intuitively, based on the abrupt change in vibrational

character, one might expect that non-propagating and possi-

bly localized modes might exist at an interface. However,

what has been lacking is an approach for identifying or

studying such modes, and the ultimate goal would be to

assess whether their role in interfacial transport is even im-

portant. Here, we discuss the recently developed interface

conductance modal analysis (ICMA) method developed by

Gordiz and Henry,10 which naturally not only includes the

crucial effect of anharmonicity but also allows one to exam-

ine the validity of the assumption that one can describe inter-

facial transport in terms of the bulk material’s modes.

In essence, the ICMA formalism is based on performing

a modal decomposition of the heat flow at an interface and

then substituting the modal contributions into either an equi-

librium molecular dynamics (EMD) or NEMD expression

for thermal interface conductance (TIC). The key question

then becomes: Which set of modes should one use in the

heat flow decomposition to calculate physically meaningful

contributions? This is important, because any mathemati-

cally complete set is guaranteed to return the same total heat

flow. However, different choices might ascribe different

amounts of the heat flow and contributions to TIC to differ-

ent frequencies. This is critical because different spectral

contributions might then lead to different temperature de-

pendent TIC predictions when quantum effects on the heat

capacity are accounted for (i.e., by applying approximate

quantum corrections).11,12 For example, if the TIC is domi-

nated by low frequency modes, the temperature regime

where it will decrease towards zero at low temperatures may

be quite low, versus if it is dominated by higher frequency

modes, the temperature regime where TIC will decrease

towards zero at low temperatures may occur at somewhat

higher temperatures.

Before addressing this question, we first review the

ICMA formalism in Section II. (More details can be found in

Ref. 10.) Then, in Section III, different modal basis sets will

be investigated for two different interfaces by both EMD and

wave-packet (WP) simulations to determine the correct basis

set. The two structures examined are the interface of two

lattice-matched mass-mismatched Lennard-Jones (LJ) solids
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and the interface of two lattice-matched mass-mismatched

solids described by Tersoff interatomic potential. Having

defined the correct modal basis set, deeper understanding of

the physics can be obtained by classifying the modes of

vibration (Section IV) and analyzing the map of correlations

(Section V). Finally, our conclusions are presented in

Section VI.

II. ICMA FORMALISM

Consider forming an interface by bringing two systems

A and B into contact, each having NA and NB atoms. We can

use the lattice-dynamics (LD) formalism13 to obtain the

complete 3N¼ 3(NAþNB) eigen solutions to the equations

of motion describing the vibrations of the system when all

the interactions are considered to be harmonic. These eigen

solutions allow us to write the atomic displacements and

velocities as

xi ¼
X

n

1

Nmið Þ1=2
en;iXn; (1)

_xi ¼
X

n

1

Nmið Þ1=2
en;i

_Xn; (2)

where n is the index for the eigen mode; xi, _xi, and mi are the

displacement from equilibrium, velocity, and mass of atom i
respectively; and en;i is the eigen vector for mode n assigning

the direction and displacement magnitude of atom i. From

the inverse of the operations in Eqs. (1) and (2), we can

define the normal mode coordinates of position and velocity

for mode n (Xn and _Xn) as

Xn ¼
X

i

m
1=2
i

N1=2
xi � e�n;i; (3)

_Xn ¼
X

i

m
1=2
i

N1=2
_xi � e�n;i; (4)

where i is the index for the atom in the system, and � repre-

sents complex conjugate. A system of N atoms has a

Hamiltonian given by

H ¼
XN

i

pi
2

2mi
þ U r1; r2;…; rnð Þ; (5)

where U is the total potential energy of the system, and the

position and momentum of atom i are denoted by ri and pi,

respectively. From Eq. (5), the individual Hamiltonian for

atom i can be written as

Hi ¼
pi

2

2mi
þ Ui r1; r2;…; rnð Þ; (6)

where Ui is the potential energy assigned to a single

atom.14,15 Using the above definition of the Hamiltonian for

an individual atom, the energy exchanged between materials

A and B at each instant of time can be written as

QA!B ¼ �
X
i2A

X
j2B

pi

mi
� �@Hj

@ri

� �
þ

pj

mj
� @Hi

@rj

� �( )
; (7)

which is a general equation that is valid for any interatomic

potential, as long as it can be written as a sum of individual

atom energies. For the case of having pairwise interactions

between materials A and B, Eq. (7) is reduced to

QA!B ¼ �
1

2

X
i2A

X
j2B

f ij � _xi þ _xjð Þ; (8)

where f ij is the pairwise exchanged force between atoms i
and j in the two materials.16–18 Having pairwise interactions,

half of the interaction energy is naturally partitioned with

atom i and the other half with atom j. Using Eq. (8) and

fluctuation-dissipation theorem,19 Domingues et al.17

showed that the TIC is proportional to the correlation

between the equilibrium heat flow fluctuations via

G ¼ 1

AkBT2

ð1
0

hQA!B tð Þ � QA!B 0ð Þidt; (9)

where G is the TIC between materials A and B, A is the

cross-sectional contact area, kB is the Boltzmann constant, T
is the equilibrium system temperature, and h� � �i indicates

the calculation of the autocorrelation function. For simplic-

ity, we will use Q instead of QA!B for interfacial heat flow in

the ensuing discussion.

It can be seen from Eq. (9) that if one can obtain the modal

contributions to the interfacial heat flow such that at each

instant the obtained modal contributions sum to the total Q

Q ¼
X

n

Qn; (10)

then G can be rewritten as

G ¼ 1

AkBT2

ð X
n

Qn tð Þ � Q 0ð Þ
* +

dt

¼
X

n

1

AkBT2

ð
hQn tð Þ � Q 0ð Þidt: (11)

This then yields the individual modal contributions to G as

Gn ¼
1

AkBT2

ð
hQn tð Þ � Q 0ð Þidt; (12)

where

G ¼
X

n

Gn: (13)

Furthermore, the modal heat flux definition in Eq. (10)

allows us to substitute for both of the total heat fluxes in Eq.

(9) leading to another definition for G as

G ¼ 1

AkBT2

ð X
n

Qn tð Þ �
X

n0
Qn0 tð Þ

* +
dt

¼
X

n

X
n0

1

AkBT2

ð
hQn tð Þ � Qn0 0ð Þidt; (14)
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where individual contributions from pairs of modes equal to

Gn;n0 ¼
1

AkBT2

ð
hQn tð Þ � Qn0 0ð Þidt: (15)

This definition represents the TIC as the summation of

all the auto-correlations and cross-correlations between eigen

mode pairs n and n0 in the system (G ¼
P

n;n0 Gn;n0) and pro-

vides new insight into the degree to which each pair of

modes interact and contribute to interface conductance. As a

result, the ICMA method presented above contains more

detail and can potentially lead to deeper insights into the

physics of TIC.

The important step is then to determine Qn, with the

requirement of Eq. (10) (i.e., Q ¼
P

n Qn), which can be

accomplished by replacing the atomic velocities in Eq. (7)

with their modal definition in Eq. (2)

Q ¼
X
i2A

X
j2B

X
n

1

Nmið Þ1=2
en;i

_Xn

 !
� @Hj

@ri

� �
�

X
n

1

Nmjð Þ1=2
en;j

_Xn

 !
� @Hi

@rj

� �( )
;

Qn ¼
1

N1=2

X
i2A

X
j2B

1

mið Þ1=2
en;i

_Xn

 !
� @Hj

@ri

� �
þ 1

mjð Þ1=2
en;j

_Xn

 !
� �@Hi

@rj

� �( )
: (16)

Equation (16) is general and it can be simplified for pairwise

interactions to

Qn¼
X
i2A

X
j2B

�f ij

2
� 1

Nmið Þ1=2
en;i

_Xnþ
1

Nmjð Þ1=2
en;j

_Xn

 !
: (17)

Equations (16) and (17) are the definitions of modal contri-

butions to interfacial heat flow.

III. MODAL BASIS SETS

Towards finding the correct set of modes to be used in

the heat flow decomposition, we have identified three poten-

tial options for the modal decomposition of the interfacial

heat flow (Eqs. (16) and (17)). If we consider two bulk mate-

rials labeled A and B, respectively, when they are joined and

form an interface, the three choices for describing the modes

that contribute to heat flow through their interface are

denoted by {A/B}, {AþB}, and {AB}. The basis set {A/B}

corresponds to the modes associated with the bulk of either

material A or B, where one performs a LD calculation for

each individual bulk material. The modal basis set {AþB}

corresponds to the addition of the eigen solutions for each

separate bulk material, whereby one simply assigns polariza-

tion vectors equal to zero for the atoms on side B, for modes

on side A, and vice versa. The third choice is then basis set

{AB}, which corresponds to the modes obtained from a LD

calculation for the entire structure, containing both materials

A and B along with their interface. The basis set choices {A/

B} and {AþB} are conceptually consistent with the current

view of interface transport, since they correspond to the

modes of the bulk material and for crystals are guaranteed to

yield all propagating modes that have well-defined veloc-

ities. Using the bulk modes, which have well-defined veloc-

ities, is critical to the current paradigm, because the PGM

description of TIC casts each mode’s contribution as propor-

tional to its velocity.5,20 Thus, a non-propagating or localized

mode’s contribution is ill-defined in the current paradigm,

and it is therefore of critical importance to determine if

{A/B} and/or {AþB} can still be used to describe interfa-

cial transport.

The correct basis set can be determined based on purely

theoretical considerations, because it must reproduce the

expected behavior in the harmonic limit (e.g., as T! 0K).

As T! 0K, the atomic interactions approach that of a per-

fectly harmonic potential, which then leads to purely elastic

interactions, whereby modes can only transfer their energy

to other modes with the same frequency. In general, there

could be modes on one side of the interface (denoted side A)

that are above the maximum frequency that can be supported

on side B, which we label as the heavier or weaker material

with a lower maximum vibration frequency denoted by

xmax;B. Modes with frequencies above xmax;B on side A have

no corresponding mode with the same frequency on side B

to exchange energy through elastic interactions. Therefore,

in the T! 0K limit, these modes cannot contribute to the

TIC when anharmonic coupling is disabled. It is important to

note that this effect is correctly reproduced by MD simula-

tions, as the WP method shows that modes above xmax;B

have 0% transmission.4,21–23 This behavior is also well

understood and reproduced by other established methods,

such as the AGF method, since the majority of

implementations of the AGF method are based on an elastic

scattering assumption.3,6,7,24,25 Thus, by simply testing

which basis sets show zero contributions to the TIC from

modes above xmax;B as T! 0K, we can determine which

basis is correct.

Here, we studied a simple interface between lattice

matched LJ face-centered cubic (FCC) solids. The LJ poten-

tial is defined based on the following formula:26

U ¼ 4e
r
r

� �12

� r
r

� �6
" #

; (18)

where e and r are the energy and distance parameters and r
is the distance between two interacting atoms. We select

equal values of e and r for both materials A and B, which

results in equal lattice constants for the two sides. An

015101-3 K. Gordiz and A. Henry J. Appl. Phys. 119, 015101 (2016)



acoustic mismatch exists at the interface because the mass of

the atoms on side B are four times the mass of atoms on side

A (mB ¼ 4mA). Both sides have FCC lattice structures. In LJ

systems, the simulations can be performed in LJ dimension-

less units,27 but to have the results correspond to a physically

meaningful system, we chose LJ parameters in our simula-

tions to be equal to that of argon (e ¼ 1:67� 10�21J,

r ¼ 3:405Å, and mA ¼ 6:6� 10�26kg (Ref. 28)). Thus, side

A represents solid argon (mass m) and side B represents a

fictitiously heavier solid argon (mass 4m) and by averaging

an isobaric-isothermal simulation at zero pressure and

T¼ 1 K, the lattice constant was calculated as 5:26Å.

A. EMD simulations

In our EMD simulations for the interface between LJ

crystals, the system consists of 3 � 3 � 60 FCC unit cells

(each side 30 unit cells long), which includes 2160 atoms

and 6480 eigen modes. We confirmed that increasing the

size of cross section does not change the features observed in

the results, which is in agreement with other reports.16,25

Initially, an equilibration period equal to 2 ns is performed.

Then, modal heat flux contributions (Qn) are recorded for

5 ns in the micro-canonical ensemble. The modal contribu-

tions to the heat flow, Qn, are then used in post processing,

which leads to the calculation of modal thermal conductance

(Gn). A time step of 1 fs was chosen for the simulations, and

ten independent ensembles were simulated to reduce the

standard deviation in TIC below 5%.29 The TIC accumula-

tion function was then computed for all three basis sets

according to the ICMA formalism10 and is shown in Fig. 1.

At a temperature of 1 K, only the {AB} basis set shows the

qualitatively correct behavior as all of the contributions

above xmax;B decay to zero. Both the {A/B} and {AþB} ba-

sis sets, however, still attribute large portions of the TIC to

frequencies that only exist in the bulk of side A and cannot

transmit any energy to side B.

It should be noted that 0% transmission above xmax;B

was also observed for a perfectly smooth interface between

two lattice matched diamond structured materials, modeled

with the Tersoff potential,30 using parameters for Si on both

sides of the interface and Si with a 4� larger mass on the

other. For this structure, we used EMD simulations to calcu-

late the modal contributions to TIC. The system consists of 3

� 3 � 36 diamond unit cells (each side 18 unit cells long),

which includes 2592 atoms and 7776 eigen modes of vibra-

tion. By averaging in an isobaric-isothermal simulation at

zero pressure and T¼ 1 K, the lattice constant was calculated

as 5:43Å. The temperature of the simulation is set to

T¼ 1 K. Initially, an equilibration period of 5 ns under the

NPT ensemble is performed. Then, modal heat flux contribu-

tions (Qn) were recorded for 10 ns in the micro-canonical en-

semble. The modal contributions to the heat flow, Qn, are

then used in post processing, which leads to the calculation

of modal thermal conductance (Gn). A time step of 0.5 fs

was chosen for the simulations, and ten independent ensem-

bles were simulated to reduce the standard deviation in TIC

below 5%. The accumulations have been calculated for dif-

ferent basis sets and are presented in Fig. 2. Again, by using

the {AB} basis set, no contribution to the TIC from frequen-

cies above xB;max was observed, yet for the {A/B} and

{AþB} bases, the frequency dependence is qualitatively

incorrect. Since only the {AB} basis set yields the qualita-

tively correct behavior in both cases, our conclusion is that

{AB} is the correct choice.

FIG. 1. Modal contributions to interface conductance at T¼ 1 K at the inter-

face of two lattice matched, mass mismatched LJ solids calculated using dif-

ferent basis sets. {A/B} basis set can either express the modes on the bulk of

side A or on the bulk of side B. The modal contributions from these two ba-

sis sets are shown in the figure using {A} and {B}, respectively. Since the

{B} basis set is based on the heavier side of the interface, the maximum

frequency in this basis set is xmax;B; therefore, the contributions by higher

frequencies cannot be calculated using the {B} basis set.

FIG. 2. Thermal interface conductance accumulation for different basis sets

at the interface of a lattice matched, mass-mismatched silicon diamond

structured system. Accumulation is calculated at a temperature of T¼ 1 K.

{A/B} basis set can either express the modes on the bulk of side A or on the

bulk of side B. The modal contributions from these two basis sets are shown

in the figure using {A} and {B}, respectively. Since the {B} basis set is

based on the heavier side of the interface, the maximum frequency in this

basis set is xmax;B; therefore, the contributions by higher frequencies cannot

be calculated using the {B} basis set.

015101-4 K. Gordiz and A. Henry J. Appl. Phys. 119, 015101 (2016)



B. Wave-packet simulations

To understand why {A/B} and {AþB} yield qualita-

tively incorrect behavior, a test was devised based on the

WP method, whereby only a narrow range of frequencies

with a single polarization is excited, and all other modes

have zero amplitude which approximates T! 0K. The WP

is launched towards the interface22,23 from bulk of side A,

and when it reaches the interface it elastically scatters, and a

fraction of its energy is transmitted into modes with similar

frequency on side B. We form the WP from the longitudinal

polarization by displacing the atoms in the system according

to Ref. 22

ui ¼ A0eiðk0Þ exp ½ik0ðz� z0Þ� exp ½�g2ðz1 � z0Þ2�; (19)

where the plane of the interface is perpendicular to the z-

direction, A0 is the amplitude of the wave packet, k0 is the

central wave vector for the WP, ei (k0) is the polarization

vector for mode k0 attributed to atom i, g is the spatial extent

of the WP, and z0 is the initial central location for the WP.22

For the WP simulations in this study, we set the parameters

to be A ¼ 0:00001a0, k0 ¼ 0:2 2p
a0

, g ¼ 50a0, and z0 ¼ 150a0,

where a0 is the lattice constant for solid argon. Initial atomic

velocities are assigned based on the differentiation of Eq.

(19) with respect to time.22 Initially, the WP has a certain

amount of energy (Einit:), and when it reaches the interface,

part of its energy is transmitted (Etrans:) and the remainder is

reflected (Erefl:). The polarization of both the reflected and

transmitted WPs can be different from the incident WP; how-

ever, both should have the same frequencies as the incident

WP.22 In the previous WP studies, the energy of different

modes is studied and the transmission (s) is computed from23

s ¼ Etrans:

Einit:
: (20)

Using Eq. (17), the modal contributions to the interfacial

heat flow are tracked in time for all three choices: {A/B},

{AþB}, and {AB}. For a correct basis set, the following

two features should be observed: (1) Since the scattering

event will be purely elastic, as the WP reaches the interface,

FIG. 3. Modal contributions to interfacial heat flow for the WP simulation at the interface of two lattice matched, mass mismatched LJ solids calculated using

different basis sets of (a) {A}, (b) {B}, (c) {AþB}, and (d) {AB}. The data represent three different instants: before the impact (t1), during the impact (t2),

and after the impact (t3). The atomic displacement profiles at these three times are shown as insets in (a). The dashed lines show (Dx) the range of frequencies

in the originally excited WP. Since the {B} basis set is based on the heavier side of the interface, the maximum frequency in this basis set is

xmax;B � 1:03THz; therefore, the contributions by higher frequencies cannot be calculated using the {B} basis set.

015101-5 K. Gordiz and A. Henry J. Appl. Phys. 119, 015101 (2016)



we should only observe heat flow contributions Qn associ-

ated with the original modes in the WP on side A or the

modes in the transmitted WP on side B and (2) If we inte-

grate Qn in time, we should see that only the modes that par-

ticipate in the incoming or outgoing WPs contribute to the

energy transfer across the interface. Figure 3 shows that {A/

B} and {AþB} do not exhibit these features, as they both

show frequency broadening when the WP reaches the inter-

face. This is unphysical because the frequency content of all

the atomic motions before, during, and after the scattering

event all lie within the same frequency range as the original

WP. Therefore, the broadening exhibited by {A/B} and

{AþB} is not representative of actual excitation of those

frequencies. Instead, this broadening is a type of aliasing,

since the modes in {A/B} and {AþB} do not contain infor-

mation about the interface condition or bonding. Therefore,

{A/B} and {AþB} ascribe contributions to modes that are

not actually excited, which is why they assign large TIC con-

tributions to modes with frequencies>xmax;B as

T! 0 K(45% and 22%, respectively). However, only when

the combined system {AB} is used are all of the theoretical

requirements satisfied.

IV. CLASSIFICATION OF THE MODES OF VIBRATION

With the correct choice of modes now established, we

turn our discussion to a deeper examination of the modes

contained in the {AB} basis set. The interface itself acts as a

compositional discontinuity that breaks the system’s symme-

try and changes the LD dynamical matrix in such a way that

not all solutions can retain sinusoidally modulated eigen vec-

tors for all of the atoms. Therefore, not all of the modes from

the {AB} basis set correspond to propagating modes.

Furthermore, since atoms near the interface have different

dynamical matrix elements than the rest of the system, some

of the eigen solutions become localized to the interfacial

region (i.e., similar to localization of vibrational modes near

defects).31 Given that some degree of localization is to be

expected, new mode classifications can emerge. One can

then envision developing a mode classification scheme based

on the degree to which modes are localized to a given por-

tion of the system. For example, Eqs. (16) and (17) indicate

that a mode can only contribute substantively to the heat

flow, if it includes participation (e.g., significant eigen vec-

tors) from atoms near the interface. Thus, a mode with zero

eigen vectors for the atoms near the interface will by defini-

tion have zero contribution to the heat flow and therefore

zero contribution to the TIC. Also, a mode that can extend

through both sides of the interface and deeply into both

materials has a greater likelihood of exhibiting longer corre-

lation times, resulting in larger contributions to the TIC (see

Eq. (9)). From this perspective, one might obtain new and

interesting insights by classifying the modes in the {AB} ba-

sis set according to (1) the degree of delocalization into both

materials, (2) the degree of localization in one material, (3)

the degree of participation near the interface, or (4) the

degree of localization near the interface.

We have tentatively classified the 3 N solutions in the

{AB} basis set into 4 distinct categories based on the region

where they are most localized: h1i extended modes, h2i partially

extended modes, h3i isolated modes, and h4i interfacial modes.

The criterion for classifying the modes in the LD calculation of

the {AB} basis set is based on the answers to 2 questions moti-

vated by inspection of Eqs. (16) and (17) in Section II, namely,

(1) Does the mode of vibration exhibit participation near the

interface?

(2) Is the mode of vibration localized to any particular part

of the system?

These two questions are motivated from the fact that if a

mode does not exhibit significant participation in the interfa-

cial region, it cannot exhibit a significant contribution to the

interfacial heat flow or TIC. Conversely, if the majority of its

vibrations are localized to the interfacial region, it can ex-

hibit a significant contribution. Also, if a mode is delocalized

across the interface and extends through both materials, it

has a higher likelihood of exhibiting longer correlation

times, which could lead to larger TIC contributions.

From LD calculations for the {AB} basis set, eigen vec-

tors are defined for all the atoms and since we are interested

in classifying eigen modes based on their vibrations with

respect to the interface, we have defined four participation pa-

rameters (PP) to measure the magnitude of the eigen vectors

for each atom in a given mode. The first PP sums the eigen

vector magnitudes for eigen mode n in the entire structure

(PPn
tot). The second PP sums the eigen vector magnitudes for

eigen mode n inside the interface region (PPn
int), which is

shown in Fig. 4. The third and fourth PP sums the eigen vec-

tor magnitudes for eigen mode n for side A, PPn
A, and side B,

PPn
B, respectively. To define the interface region, we simply

used a cutoff value, such that whenever the distance between

an atom and the interface plane is less than xcut (Fig. 4), the

atom is considered inside the interface region. The cut off

value for both the LJ and diamond Si systems was taken to be

equal to two lattice constants. PPn
tot, PPn

int, PPn
A, and PPn

B for

an eigen mode n are then defined as follows:

PPn
tot ¼

X
i2entire system

jen;ij; (21)

PPn
int ¼

X
i2interface region

jen;ij; (22)

PPn
A ¼

X
i2A

jen;ij; (23)

PPn
B ¼

X
i2B

jen;ij: (24)

FIG. 4. Interface region. xcut assigns the span of the interface region around

the interface. For this study, the value of xcut has been chosen equal to 10Å,

which is equivalent to the LJ cut-off. For the diamond Si system, the cutoff

was equal to two lattice constants.
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The comparison of relative magnitudes for these four quanti-

ties is then used to classify each eigen mode n as one of the

four types, based on answers to a series of questions. First, to

answer the question: “Is the mode present at the interface?,”
we require PPn

int to be a significant fraction of PPn
tot (e.g.,

more than 0.1%), which leads to the requirement that

PPn
int=PPn

tot > 0:001. To then answer the question: “Is the ma-
jority of the vibration at the interface?,” we require that more

than half of the vibrations be located within the interface

region, which is mathematically expressed as the condition

PPn
int=PPn

tot > 0:5. To then determine “Is the mode localized
to side A” or “Is the mode localized to side B?,” we require

that one side of the interface exhibit at least 10 times larger

portion of the vibrations (e.g., more than 90% of the vibration

is on one side of the interface). This is then expressed mathe-

matically as PPn
A=PPn

B > 10 to be localized on side A and

PPn
B=PPn

A > 10 to be localized on side B. Thus, we then

require PPn
A=PPn

B � 10 and PPn
B=PPn

A � 10 for delocalized

modes. The four mode classifications are then defined by the

following answers to the preceding questions and are summar-

ized below using the corresponding mathematical statements:

Modes of type h1i are present at the interface, but the ma-

jority of the vibration is not at the interface, and they are

delocalized into both materials.

Modes of type h2i are present at the interface, but the ma-

jority of the vibration is not at the interface, and they are

localized on one side of the interface.

Modes of type h3i are not present at the interface.

Modes of type h4i have the majority of their vibration at the

interface.

PPn
int=PPn

tot > 0:001

PPn
int=PPn

tot < 0:5

PPn
A=PPn

B � 10

PPn
B=PPn

A � 10

; mode n is type h1i;

8>>><
>>>:

(25)

PPn
int=PPn

tot 	 0:001

PPn
int=PPn

tot � 0:5

PPn
A=PPn

B > 10

; moden is type h2i present insideA;

8><
>:

(26)

PPn
int=PPn

tot 	 0:001

PPn
int=PPn

tot � 0:5

PPn
B=PPn

A > 10

; moden is type h2i present insideB;

8><
>:

(27)

mode n is type h3i if it is not h1i; h2i; or h4i; (28)

PPn
int=PPn

tot > 0:5; mode n is type h4i: (29)

With this classification scheme, every eigen solution falls

uniquely into one type and it is to be reiterated that the tax-

onomy introduced herein is preliminary. Additional studies

are needed to determine the extent to which these mode

definitions should be revised or expanded and whether or

not these classifications serve as useful descriptors for the

TIC.

Figure 5 shows examples of each of the four types of

modes, and Fig. 6 shows their respective density of states.

Extended modes (type h1i) are delocalized over the entire

system (Fig. 5(a)) and because both sides (A and B) vibrate

at one frequency, their density of states has a sharp cutoff at

xmax;B (Fig. 6). Partially extended modes (type h2i) vibrate

on one side of the interface and only partially extend through

to the other side (Fig. 5(b)). These modes comprise the ma-

jority of the eigen solutions (see Fig. 6). Isolated modes

(type h3i) exist on one side of the interface, but do not

include participation near the interface (Fig. 5(c)). Interfacial

modes (type h4i) are localized/peaked near the interface

(Fig. 5(d)) and they make up a small portion (0.3%) of the

density of states, yet they play a significant role in the trans-

port. The contributions to the TIC for each mode type are

42.87% (extended), 53.20% (partially extended), 0.55% (iso-

lated), and 3.16% (interfacial). This indicates that, despite

their low population, interfacial modes have the highest con-

tribution on a per mode basis (10� higher than the average

contribution per mode GTotal/3 N).

To confirm that these mode classifications are not just a

peculiar artifact of the LJ system, we have also performed

the same calculations on the previously discussed Si interfa-

ces modeled with the Tersoff potential, where the interaction

parameters are the same for both sides, but the mass differs

by 4�. LD calculations for such interfaces, as well as for

interfaces where both the parameters and masses are differ-

ent (i.e., corresponding to Si-Ge), again revealed the same 4

classifications of modes. Even more interestingly, when the

modal contributions to TIC are calculated for these lattice-

matched mass-mismatched Si interfaces at a higher tempera-

ture of T¼ 400 K, a narrow band of interfacial modes

between 12 and 13 THz, which only comprise 0.3% of the

modes, are responsible for 
20% of the TIC (Fig. 7(a)). For

these ICMA calculations, the simulation parameters are the

same as those used to obtain the results shown in Fig. 2,

except that the lattice constant at this temperature is equal to

5:54Å. The increase in conductance in the frequency range

of 12–13 THz is so large that it leads one to question whether

or not it can be considered anomalously high by comparison

to the maximum conductance that can be obtained from

modes described by the PGM. Although one could attempt

to argue that the preceding observations may still be some-

what explainable by some modification of the PGM, the sili-

con diamond structured system exhibits individual

conductance contributions that are so large that they cannot

be predicted by the PGM at all. According to the Landauer

formalism, the net heat flow ðqÞ across the interface of two

materials A and B is written as20,32

q ¼
X

pA

1

VA

Xkmax

kx;A¼�kmax

Xkmax

ky;A¼�kmax

Xkmax

kz;A¼0

vz;A�hxsAB f x; TAð Þ � f x; TBð Þð Þ

2
4

3
5; (30)
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where the summations are over different polarizations (p)

and allowed wave vectors (kx;y;z) in material A (i.e., modes

with positive kz and positive group velocities that are moving

toward the interface and exist only on one side of the

interface), VA is the volume of side A, vz;A is the phonon ve-

locity normal to the interface, �h is the Planck’s constant, x is

the frequency of vibration, s is the transmission probability

for the mode of vibration, and f is the Bose-Einstein distribu-

tion function. The definition of heat flow in Eq. (30) results

in the following expression for conductance:20

G ¼
X

pA

1

VA

Xkmax

kx;A¼�kmax

Xkmax

ky;A¼�kmax

Xkmax

kz;A¼0

vz;A�hxsAB
df x; Tð Þ

dT

2
4

3
5:
(31)

To obtain the upper limit of modal contributions that

can be obtained from the PGM, we used the classical high

temperature limit for the mode heat capacity, such that Eq.

(31) simplifies to

G ¼
X

pA

1

VA

Xkmax

kx;A¼�kmax

Xkmax

ky;A¼�kmax

Xkmax

kz;A¼0

vz;AsABkB

2
4

3
5: (32)

FIG. 5. Examples of the four classifications of eigen modes identified for the {AB} basis set for the interface of two lattice matched, mass mismatched LJ sol-

ids. Each panel shows eigen vector displacements for an example of each type of solution: (a) extended h1i, (b) partially extended h2i, (c) isolated h3i, and (d)

interfacial h4i modes. The frequencies of vibration for these for examples of eigen modes of vibration are 0.34 THz, 0.68 THz, 0.96 THz, and 0.47 THz,

respectively.

FIG. 6. Density of states and population (i.e., percentage of the total number

of modes) for the four classifications of eigen modes identified for the {AB}

basis set for the interface of two lattice matched, mass mismatched LJ solids.
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Equation (32) only utilizes the vibrational information

of the left side of the interface. In an effort to compare to an

upper limiting case, we can further assume that all of the left

side vibrational modes can completely transfer their energy

to the other side of the interface with a transmissivity of

unity (s ¼ 1). We can further assume that all modes are

assigned the maximum velocity held by any mode in the sys-

tem, namely, the speed of sound in silicon (8000m=s).33

Under these upper limiting assumptions, the maximum con-

ductance that a mode of vibration ðnÞ can exhibit based on

the PGM description is calculated by

Gmax;n ¼
� 1

VA

�
vz;A;maxkB; (33)

which for silicon lattice Gmax;n ¼ 7:18� 106W=m2K. Using

this value as a reference, we calculated the accumulation

function for the silicon diamond structured system using the

calculated phonon DoS and assigning the maximum conduct-

ance possible from Eq. (33) for every mode as a conservative

overestimation based on the PGM (Fig. 7(a)). The results

show that the conductance contributions obtained from the

ICMA method fall below the maximum PGM limit every-

where, except for the region between 12–13 THz, where

there is a sharp increase. Figure 7(b) shows the ratio of the

accumulation slopes obtained from the data in Fig. 7(a),

which at each frequency represents the ratio of the increase

in conductance predicted by ICMA to the maximum possible

increase in conductance that could ever be explained by the

PGM. This is an important new insight as it essentially sug-

gests that there is no fundamental limit on the maximum

conductance that can be observed at an interface, since the

ICMA formalism shows that a given mode’s conductance

contribution is not bounded by the notion of 100%

transmission as it is in the PGM. The unbounded nature of

such a formalism arises from the fact that the final expression

for TIC is proportional to an integral of an autocorrelation

function. Other studies have shown that there may exist cer-

tain non-ergodic situations where the autocorrelation func-

tion does not fully decay, thereby giving rise to a divergent

transport coefficient34,35 and it is useful to recognize that the

same possibility exists here.

Outside the frequency range of 12–13 THz, the values

fall below unity, which does obey the PGM limit in Fig.

7(b). However, between 12 and 13 THz, the interfacial

modes greatly exceed the PGM upper limit, which is a

behavior that cannot be rationalized within the PGM para-

digm. As a result, the ICMA formalism offers new possibil-

ities for improving the conductance at interfaces, as it does

not seem to be limited by the 100% transmission limit and

therefore provides a new framework for thinking about inter-

facial heat flow engineering.

V. CORRELATION MAPPING

One of the other advantages of the ICMA method is that

we can examine the extent of correlation/interaction between

different modes through a 2D mapping of Gn;n0 correlations

(Fig. 8) using Eqs. (16) and (17). To understand the modal

interactions/correlations at the interface of two LJ solids in

more detail, we calculated the 2D matrix of Gn;n0 correlations

as shown in Fig. 8 as color maps and for different mode clas-

sifications as 3D correlation/interaction color maps in Figs.

9–14. Generally, the magnitude of auto-correlations (n ¼ n0)
is much larger than the cross-correlations (n 6¼ n0); therefore,

removing auto-correlations from Fig. 8(a) presents a clearer

view of the details of the cross-correlations as shown in Fig.

8(b). All of the Gn;n0 plots in Fig. 8 are symmetric about the

diagonal, and examination of the plots leads one to notice

interesting features that naturally emerge from the modal

interactions. What is particularly interesting is that when an-

alyzed with the {AB} basis set, features emerge at locations

where mode character changes. For instance, in the LJ sys-

tem, there is a region of minimal correlation in the frequency

range of 0.4–1.0 THz. Here, 0.4 THz corresponds to the

onset of localization (Fig. 6), where the first partially

extended mode appears. Below 0.4 THz, all of the modes

extend through the entire structure. Interestingly, 1.0 THz

corresponds to xmax;B, whereby modes that extend into the

bulk of the heavier side B cease to exist, since the bulk of

side B cannot support higher frequency vibrations. The fact

that distinct features in the mode-mode correlation are

observed where the mode character changes is a further indi-

cation that the four classifications are meaningful. The ma-

jority of the modes present in the 0.4–1.0 THz frequency

band are partially extended modes (type h2i) that primarily

exist on the heavier side of the interface (side B) and these

partially extended modes exhibit much smaller correlations

with other modes in the system, yet they contribute more

than 50% of the TIC (see Fig. 1). Also, interfacial modes

show the strongest correlation/interaction with the low fre-

quency extended modes and higher frequency partially

extended modes on the lighter side (side A). This leads us to

FIG. 7. Accumulation function for the thermal interface conductance at the

interface of a lattice matched, mass-mismatched diamond structured (sili-

con) system at T¼ 400 K. (a) shows the comparison between the ICMA

results and an upper limiting value associated with the PGM. (b) shows the

ratio of the slope (rate of increase) of accumulation function calculated by

ICMA to the maximum slope that can in any way be rationalized by the

PGM. It is seen that the rate of increase in the frequency of range of Dx
exceeds the maximum PGM prediction, becoming larger than unity (PGM

limit).
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conjecture that interfacial modes may help facilitate the

transfer of the energy between low frequency extended

modes and high frequency partially extended modes on the

lighter side (side A) and vice versa. If true, these modes

could serve as an important bridge for inelastic interactions,

whereby modes with frequencies above xB;max transfer their

energy to interfacial modes at lower frequencies, which then

transfer the energy into extended modes at even lower fre-

quencies so it can propagate into the heavier side (side B). If

true, this pathway provides a new physical picture for how

interfacial transport can occur.

Another key feature captured by the {AB} basis set and

not by {A/B} or {AþB} is that when two systems are

FIG. 8. Correlation contributions to

thermal interface conductance

between eigen modes n and n0,
Gn;n0 ðW m�2 K�1Þ, at the interface of

two lattice matched, mass mismatched

LJ solids. The complete set of auto-

and cross-correlations is in panel (a).

Panel (b) shows only the cross-

correlations after the auto-correlations

have been artificially set to zero from

the full set of correlations. (c)–(f) show

correlations between the entire set of

modes and the four classifications of

vibrational modes (e.g., types h1i–h4i),
(c) shows h1i extended mode correla-

tions, (d) shows h2i partially extended

correlations, (e) shows h3i isolated

mode correlations, and (f) shows h4i
interfacial mode correlations.

FIG. 9. Three-dimensional correlation contributions to thermal interface

conductance between eigen modes n and n0, Gn;n0 , at the interface of two lat-

tice matched, mass mismatched LJ solids. This plot shows the complete set

of auto- and cross-correlations.

FIG. 10. Three-dimensional correlation contributions to thermal interface

conductance between eigen modes n and n0, Gn;n0 , at the interface of two lat-

tice matched, mass mismatched LJ solids. This plot shows only the cross-

correlations after the auto-correlations have been artificially set to zero from

the full set of correlations.
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coupled together, the heavier atoms near the interface on

side B can experience vibrations above xmax;B,36,37 which is

captured by the partially extended and localized modes near

the interface. This feature is critical as it has been observed

in actual MD simulations of interfaces,36,37 but cannot be

captured by the conventional modes contained in {A/B} or

{AþB}.

VI. CONCLUSION

The fact that one cannot use the same modes that existed

in the native crystals to accurately understand what happens

at an interface between dissimilar materials is a critical new

insight. The fact that non-propagating localized modes can

exist and exhibit the largest contributions to the TIC on a per

mode basis further highlights the importance of thinking

beyond the current PGM based view of interfacial transport,

as previous models would be unable to account for the con-

tributions of localized and/or non-propagating modes. The

usage of the combined system’s modal basis set {AB} has

far reaching implications, and the new ICMA based perspec-

tive provides a more general and complete physical picture

that naturally includes all of the atomic level interface topog-

raphy as well as anharmonicity to full order. Many additional

studies to understand the effects of temperature, anharmonic-

ity, interdiffusion, roughness, imperfections, dislocations,

stress, changes in crystal structure, etc., are needed, but

understanding which modes must be used serves as a critical

step forward.
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