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In this report, we compare time averaging and ensemble averaging as two different methods for

phase space sampling in molecular dynamics (MD) calculations of thermal conductivity. For the

comparison, we calculate thermal conductivities of solid argon and silicon structures, using

equilibrium MD. We introduce two different schemes for the ensemble averaging approach and

show that both can reduce the total simulation time as compared to time averaging. It is also found

that velocity rescaling is an efficient mechanism for phase space exploration. Although our

methodology is tested using classical MD, the approaches used for generating independent

trajectories may find their greatest utility in computationally expensive simulations such as first

principles MD. For such simulations, where each time step is costly, time averaging can require

long simulation times because each time step must be evaluated sequentially and therefore phase

space averaging is achieved through sequential operations. On the other hand, with ensemble

averaging, phase space sampling can be achieved through parallel operations, since each trajectory

is independent. For this reason, particularly when using massively parallel architectures, ensemble

averaging can result in much shorter simulation times (�100–200X), but exhibits similar overall

computational effort. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4906957]

I. INTRODUCTION

The objective in many atomistic simulations is to calcu-

late structural, transport, kinetic, or thermodynamic proper-

ties from the microscopic dynamics of atomic/molecular

motions and interactions. Collecting this information during

the atomistic simulation is referred to as phase space sam-

pling.1,2 Phase space sampling can be done by two methods:

time averaging and ensemble averaging. Time averaging is

the sequential probing of phase space in which one trajectory

(i.e., the evolution of a single microstate with time under

Newtonian law) moves through phase space until a sufficient

volume has been probed and a representative average has

been obtained. In contrast, ensemble averaging probes the

phase space with independent trajectories. Utilizing parallel

processing,3 these independent trajectories can be simulated

concurrently, which can greatly reduce the time required for

the user to collect the phase space data and retrieve the

results. The results of statistical mechanics derivations are

most often written in terms of ensemble averaging.

However, if a dynamical system is ergodic the ensemble

average becomes equal to the time average.4 Calculation of

properties that depend explicitly on the system dynamics,

such as transport coefficients from linear response theory

(e.g., mass diffusivity and thermal conductivity) requires one

to track a trajectory in time to sample events that take a finite

amount of time to occur (i.e., diffusion hops, phonon

scatterings, etc.). Consequently, for such properties there is a

minimum simulation time needed to gather data about the

particular phenomena of interest. Monte Carlo (MC) meth-

ods, on the other hand, utilize ensemble averaging in its

purest form by consecutively examining distinct individual

snapshots of the system. As a result, MC is not applicable to

the calculation of such dynamical properties, and time aver-

aging is not interchangeable with ensemble averaging in

such cases.

In this study, we examine and compare time averaging

and ensemble averaging for molecular dynamics (MD) simu-

lations to quantify their respective benefits in the calculation

of thermal conductivity. We delineate the respective advan-

tages of each approach by using two different metrics for

evaluation: (1) elapsed time (ET), which is the time experi-

enced by the user (i.e., in hours) before the results are

obtained, and (2) the computational cost (CC), or the total

computational effort expended (i.e., in processor*hours) to

obtain the results. To generalize the results in the ensuing

analysis such that the computational times are not specific to

the hardware used, we use the total number of MD time steps

to represent the ET. The actual ET for a user depends on the

architecture, efficiency of the MD code, and various other

factors. In addition, to enable a straightforward comparison

independent of the specific hardware or code used, we use

the product of the number of atoms being simulated multi-

plied by the number of MD time steps evaluated to quantify

the CC. By presenting our data in this way, our conclusions

remain independent of the specific hardware or software

configuration.
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Despite the wide application of ensemble averaging to

the study of the structural properties of bio-systems (e.g.,

protein-folding5,6 and biopolymers7), to the best of our

knowledge, time averaging has been the most prevalent

approach in the context of classical MD simulations, espe-

cially thermal conductivity calculations.8–18 In time averag-

ing, typically the property of interest is calculated from

sufficiently long simulation times until convergence is

achieved, which is when the result no longer changes signifi-

cantly with increased simulation time (phase space sam-

pling).1 Very often, a combination of time averaging

supplemented by several trajectories (on the order of 10) is

used to achieve convergence. In some cases, when conver-

gence is difficult, additional trajectories can be used to

improve averaging. For instance, Chalopin et al. used forty

trajectories19 to smooth the oscillations present in the MD

simulations of thermal conductance. However, to the best of

our knowledge, we are unaware of a case where ensemble

averaging has been used solely for the purpose of reducing

the ET for the user. The rarity in ensemble averaging utiliza-

tion may be partially due to the increased complexity on the

part of the user. For time averaging, collected data are usu-

ally tabulated as a single contiguous file for each independ-

ent trajectory and independent trajectories are often kept in

separate directory structures. For small numbers of inde-

pendent trajectories, aggregating the data is straightforward

and easy to manage by manual commands. For large num-

bers of trajectories, however, this can be more cumbersome,

as some independent trajectories may fail to finish the time

averaging (i.e., the simulation time exceeds the requested

wall-time in a high-performance computing cluster, or an

unexpected memory error), which complicates the aggrega-

tion in the end. Moreover, using time averaging in classical

MD simulations, results are usually obtained in a reasonable

time frame, which does not create a need for other

approaches. As a result, time averaging has prevailed as the

method of choice because it can be more straightforward to

implement and it yields the same final result for systems that

behave ergodically.

Reducing the ET for the user is particularly important

for simulations such as first-principles MD (FPMD).20–23

However, it is important to note that similar to classical MD,

FPMD simulations do not reproduce quantum statistics,

which is particularly important at low temperatures.24

Nonetheless, the processor time for each time step in FPMD

simulations is several orders of magnitude larger than that of

classical MD based on empirical potentials,25 and as a result

time averaging can become rate limiting. If the system is er-

godic, to gather the same amount of phase space data, rather

than a single trajectory, we can launch multiple trajectories

in different positions in phase space. If we have sufficient

computing resources, we can assume that simulations for

these multiple trajectories can be executed concurrently

using parallel processing architectures. Thus, the same

amount of information can be gained by shorter simulation

times devoted to each individual trajectory, resulting in a sig-

nificant reduction in the ET to retrieve the results. Likewise,

for FPMD simulations, replacing the sequential calculation

of time steps needed for time averaging with the concurrent

calculations of multiple trajectories in parallel can drastically

reduce the ET experienced by the user. Although the ET is

reduced, it is not clear a priori if ensemble averaging will

require more, less, or similar CC. To examine and compare

the CC and the efficacy of time averaging and ensemble

averaging methods in phase space sampling, here, we

employ equilibrium MD simulations to calculate the thermal

conductivity of solid argon and silicon. To make our conclu-

sions independent of the materials chosen, we use two differ-

ent materials described by two different inter-atomic

potentials. Although our examples are based on classical

MD simulations, the presented ideas and methods can be

applied and will likely offer greater utility for more expen-

sive simulation methods such as FPMD.

It is interesting to note that recent advances in the imple-

mentation of graphics processing units (GPUs) in the

calculation of thermal conductivity using MD and the Greek-

Kubo formalism11,26 have shown speed up factors between

10 and 11.11 However, in these reports, the main approach is

still based on time averaging. These implementations incor-

porate the parallel structure inside GPUs to reduce the time

needed to complete each time step for one trajectory as com-

pared to central processing units (CPUs). We believe that

having access to a cluster with a large number of GPU nodes

could decrease the ET even more, but the increased speed

would likely apply equally to time and ensemble averaging.

In Secs. II–V, the distance between trajectories is eval-

uated by two independence parameters introduced in

Sec. III. Sections IV and V show the results and discussion

for utilization of the techniques presented, and we show

example of calculations for the thermal conductivities of

solid argon and silicon structures, respectively. Finally, con-

cluding remarks are presented in Sec. VI.

II. TRAJECTORY GENERATION SCHEMES

One of the barriers to the implementation of ensemble

averaging is the generation of independent trajectories, to

probe the relevant portions of phase space. The correct

choice of trajectories can minimize the total number of

trajectories needed for convergence. To conceptually under-

stand this process, one could imagine generating a set of tra-

jectories that are localized in a very small region of the

phase space. These localized trajectories cannot probe the

phase space efficiently, so more trajectories are required to

achieve convergence because each trajectory adds little in-

formation to the statistical average. In contrast, choosing a

group of trajectories equally spaced over the relevant phase

space volume being probed can minimize the number of tra-

jectories needed to reach convergence, as each trajectory

would add the maximum information to the statistical aver-

age. From this perspective, the generation of trajectories can

be critical. In trajectory generation, the goal is to produce

trajectories that are equidistant on the relevant hyper surface

in phase space and equilibrate them with the minimum CC.

To avoid highly improbable atomic configurations, the pro-

cess of equilibration is indeed important as data gathered in

this regime can significantly impact the results. Furthermore,

the time required to equilibrate the trajectories is non-
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negligible, particularly for computationally expensive

approaches such as FPMD. Therefore, the reduction of the

CC even in the trajectory generation step is of great

importance.

Theoretically, a myriad of potential approaches can be

used to generate independent trajectories. Here, we compare

two potential schemes as examples to determine their effec-

tiveness. The first scheme (scheme 1) generates each individ-

ual trajectory at a different random position in phase space,

using random numbers to seed initial atomic velocities and

random initial displacements from the initial equilibrium

atomic positions. As an alternative for liquids or disordered

systems, one could use random displacements from an initial

seed configuration. For solids, one could enforce a maximum

magnitude for the random displacements equal to the

average amplitude of vibrations at the desired simulation

temperature (i.e.,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBT=ELc

q
, where kB, T, E, and Lc represent

the Boltzmann constant, the temperature of the simulation,

elastic modulus, and the characteristic length of the system

under study, respectively). Utilizing larger amplitudes may

have adverse effects and cause instabilities in the sys-

tem.27,28 After generating randomly positioned trajectories

throughout phase space, we use velocity rescaling to equili-

brate the individual trajectories at the temperature at which

properties need to be calculated (i.e., the target temperature).

The illustration of scheme 1 can be seen in Fig. 1(a).

To reduce the CC of generating the trajectories, we

developed a second scheme (scheme 2) that unlike scheme 1,

generates all the trajectories from a common initial point in

phase space and therefore can reduce the CC associated with

trajectory generation by as much as a factor of two. To make

the N trajectories more distant in phase space as quickly as

possible, scheme 2 includes three stages with different tem-

peratures assigned to each stage. To implement the chosen

temperatures, we use velocity rescaling throughout all of the

stages. In addition, to further increase the distance between

the trajectories in phase space, the frequency at which the

velocities are rescaled are chosen randomly for every single

simulation in scheme 2. Velocity rescaling is a simple yet

effective algorithm for spreading trajectories in phase space.

To move a single equilibrated ensemble from one point

in phase space to another, we can randomly perturb the posi-

tions and velocities of the atoms. If a microcanonical ensem-

ble is used (NVE), this approach, however, would likely lead

to a different temperature. This is unacceptable for many

situations because many properties vary with the tempera-

ture, and very often we are interested in the average value of

a property at a specific temperature. Therefore, it is neces-

sary to control the temperature of the perturbed trajectory,

which can be achieved by rescaling the velocities of the

initial trajectory to the values corresponding to the desired

system temperature. In addition, within the range of tempera-

ture fluctuations, the trajectory can explore different

surfaces of constant energy in phase space according to

DE ¼ 3=2NkBðrTÞ. Here, DE represents the range of energy

fluctuations, N is the number of atoms in the system, kB is

the Boltzmann constant, and rT is the standard deviation of

the simulation temperature. In this view, velocity rescaling is

a useful tool for generating new trajectories. Its application

on any MD time step perturbs the system to a new position

in phase space that is different than the preceding step, yet it

does not drastically change the temperature or the energy of

the simulation and therefore most often leads to the same

macrostate.

In stage 1 of scheme 2 of trajectory generation, the

objective is to increase the number of trajectories from one

to the desired value of N via branching from the initial point.

We start with a single trajectory at an initial point and simu-

late it for a number of MD time steps using velocity rescal-

ing. Then, we create a second trajectory from the first

trajectory by randomly perturbing the velocities of the first

trajectory to a different temperature. We keep the original

NVE ensemble for the first trajectory, and now the second

trajectory is set onto a different path since it is the product of

a single NVT step at a different temperature. This process in

essence branches one trajectory into two and the process can

be repeated at various points to quickly generate a large

number of trajectories. For example, by following the same

FIG. 1. Two schemes for trajectory generation. (a) Scheme 1: N trajectories

are generated randomly in phase space via random displacements and veloc-

ities from an initial seed configuration, such as the equilibrium lattice sites

for solids. After an initial equilibration period, phase space sampling is exe-

cuted to gather data about the property of interest. (b) Scheme 2: The num-

ber of trajectories is doubled at each branching step in stage 1 until the

desired number of trajectories (2M) are generated at step M. Simulation tem-

peratures are increased to a high temperature in stage 2 and then are

decreased to the target temperature in stage 3. The simulation time lengths

for stages 1–3 are tIT, tHT, and tTT, respectively.
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strategy, where the number of trajectories is doubled at each

branching step, and if M branching steps occur during in

stage 1 (e.g., the trajectory generation stage), then 2M trajec-

tories will be generated by the end of stage 1. During stage

1, the temperature for every single simulation is chosen ran-

domly between the target temperature and a high tempera-

ture (i.e., a temperature larger than the target temperature).

The high temperature should be assigned in such a way so

that it does not induce any unwanted structural changes to

the system under study (e.g., phase transitions or atomic dis-

locations). We refer to these random temperatures for the

simulations in stage 1 as intermediate temperatures (i.e.,

between the target and the high temperatures).

In stages 2 and 3 of scheme 2 of trajectory generation,

the objective is, first, to uniformly disperse the trajectories

that are previously generated in stage 1 throughout phase

space, and second, to have equilibrated trajectories at the end

of scheme 2. To achieve this goal, in stage 2, we raise the

temperature for all the trajectories to a high temperature (i.e.,

the same high temperature considered for stage 1). Then, in

stage 3, we reduce the temperatures of the trajectories to the

target temperature, so that the trajectories are now in equilib-

rium at the target temperature and are ready for phase space

sampling. The schematic for scheme 2 can be seen in

Fig. 1(b). The length of simulation times for stages 1–3 are

denoted by intermediate temperature time (tIT), high temper-

ature time (tHT), and target temperature time (tTT), respec-

tively. The length of these simulation times devoted

for ensemble production schemes depends on the specific

property and the system under study.

III. INDEPENDENCE PARAMETERS

In devising trajectory generation methods, we can use

two metrics to quantify the relative instantaneous distance

between two trajectories in phase space. We refer to these

metrics as independence parameters (IP) for both position

(IPr) and velocity (IPv) variables. These parameters are

measures of orthogonality/similarity among the trajectories29

and are defined as

IPr ¼

X
i;i0

ri � ri0

X
i

ri � ri

� � X
i0

ri0 � ri0

� � !1=2
; (1)

IPv ¼

X
i;i0

vi � vi0

X
i

vi � vi

� � X
i0

vi0 � vi0

� � !1=2
; (2)

where IPr and IPv are evaluated for two distinct trajectories

in phase space using the atomic positions (r) and velocities

(v), where atoms in one trajectory are denoted by the sub-

script i and atoms in the second trajectory are denoted by

subscript i0. Since positions and velocities are functions of

time, IPr and IPv are also functions of time, and the normal-

ization criterion in the denominator ensures that IPr and IPv

vary between zero and one. IPr or IPv equal one when two

trajectories are located exactly at the same point in phase

space. As they become more and more distant in phase

space, IPr and IPv will decrease and approach zero, which

corresponds to the case of completely independent trajecto-

ries. The variation of the independence parameters during

schemes 1 and 2 of trajectory generation in the solid argon

simulation is shown in Fig. 2. Figure 2 shows that both IPr

and IPv are small for scheme 1, suggesting that they are

spread uniformly in phase space, which can lead to efficient

ensemble averaging. This was expected since the trajectories

were chosen randomly in phase space, which guarantees

their uniform distribution to a high degree. Furthermore, the

combination of the high and intermediate temperatures

throughout the three stages of scheme 2 allows the initial

trajectories to separate from each other in phase space

much more quickly (faster decrease of IPr and IPv (Fig. 3,

top panel)) than if we used a constant target temperature

throughout the stages (slower decrease of IPr and IPv (Fig. 3,

bottom panel)).

IV. CASE STUDY 1: SOLID ARGON; RESULTS AND
DISCUSSION

To compare the CC of the time averaging and the

ensemble averaging methods and to evaluate the two trajec-

tory generation schemes, we calculate the thermal conductiv-

ities of solid argon and silicon structures. For this purpose,

we utilize equilibrium MD simulations and Green-Kubo

formalism.30,31 Based on Green-Kubo expression, thermal

conductivity is proportional to the integral of the heat flux

autocorrelation function (HFACF). In case of ensemble

averaging, the HFACF is obtained by averaging over the

FIG. 2. Variation of independence parameters (IP) for schemes 1 and 2 for

trajectory generation. Utilizing different temperatures at each stage of

scheme 2 (a) will cause faster decrease in the IPr and IPv than the case of

utilizing the same target temperature for all of the stages (b). Increasing the

simulation time lengths for stages 1–3 decreases the IPr and IPv values to the

point that they become closer to zero (i.e., completely independent trajecto-

ries) at the end of scheme 2 for trajectory generation. However, in our sys-

tem of study, we confirmed that IPr and IPv values less than about 0.3 were

sufficient to efficiently sample the phase space via the available ensembles

(i.e., the calculated value for thermal conductivity changed by less than 1%

for IPr and IPv values< 0.3). (b) Also shows the values of IPr and IPv for

scheme 1 (black dashed line), which are small from the moment that the tra-

jectories were chosen in phase space.
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individually calculated HFACFs from independent trajecto-

ries. Except in special cases,32 the HFACF decays to zero,

causing the integral to converge. Therefore, in the calcula-

tions of thermal conductivity, a simulation length equal to at

least the decay time of the HFACF is necessary. The integral

of the HFACF can be calculated periodically during an MD

simulation (i.e., by post-processing), which allows the user

to terminate the simulations upon convergence. Increasing

the number of parallel processors involved in time averaging

increases the rate of time averaging to the point where the

computation is dominated by only the communication time

between processors. Conversely, in ensemble averaging, if

sufficient computational resources (i.e., number of process-

ors) are available, we can evaluate all of the trajectories con-

currently. As a result, while ensemble averaging can scale

linearly and indefinitely with the number of processors, time

averaging becomes saturated when the communication time

becomes rate limiting.

In the following examples, we performed all MD simu-

lations using the Large-scale Atomic/Molecular Massively

Parallel Simulator (LAMMPS) package.33 We obtained the

instantaneous heat flux in the simulation according to the

quantum energy flux operator derived by Hardy.30,34 For

solid argon, we assigned the simulation temperature to be

40 K. Furthermore, we used the Lennard-Jones potential,9,35

a time step of 1 fs, and a face-centered-cubic structure that

consists of 500 atoms in a 5 � 5 � 5 unit-cell simulation box

with periodic boundary conditions applied in all three dimen-

sions. For solid argon, in scheme 1 of trajectory generation,

we equilibrated the randomly chosen ensembles in phase

space for 3 ps (teq in Fig. 1(a)). For scheme 2, the simulation

time length for each of the three stages was considered to be

equal to 1 ps, which results in the same total of 3 ps simula-

tion time for scheme 2 (i.e., tITþ tHTþ tTT) as scheme 1. In

addition, we chose the high temperature in scheme 2 of

trajectory generation to be equal 80 K. We generated 512 tra-

jectories using both of the trajectory generation schemes.

The main difference between calculating the thermal

conductivity of solid argon by time averaging and ensemble

averaging is the time devoted to the data acquisition step

(i.e., phase space sampling after the generation of ensem-

bles), during which instantaneous heat flux is recorded. The

data acquisition step in time averaging was about 1 ns.36

However, in ensemble averaging, we recorded the instanta-

neous heat flux in each trajectory for only 50 ps, which is

twenty times shorter than the 1 ns of data acquisition time in

time averaging. If we increase the number of trajectories

from one to 500 and at each point calculate the HFACF by

averaging it over these trajectories, the obtained HFACF

becomes gradually smoother until the point of convergence

(Fig. 3). By integrating the HFACF from 0 to 25 ps (it should

be noted that other techniques for calculating thermal con-

ductivity from Green-Kubo method, such as first avalanche37

approach are also compatible with all the techniques pre-

sented herein), we calculated the thermal conductivity of

solid argon to be 0.28 6 0.02 W/(m K), which is in reasona-

ble agreement with other reported values (e.g., 0.21 W/(m

K)) by Kaburaki et al.36 and 0.29 W/(m K) by Tretiakov and

Scandolo.38 The number of trajectories considered in ensem-

ble averaging mainly depends on the parallel processing

resources at hand and the physical background of the prop-

erty under investigation. For instance, some transport proper-

ties may require larger numbers of trajectories for their

convergence.19

Figure 4 shows the CC for the convergence of thermal

conductivity calculations for both time averaging and ensem-

ble averaging. In time averaging, increasing the number of

MD simulation time steps increases the CC. On the other

hand, in ensemble averaging, the CC is proportional to the

number of trajectories included (i.e., n) in the calculations.

Another issue arises in how one should combine the

results of a given number of trajectories to obtain the results.

For example, if one has data available from N trajectories

and wants to assess how the result varies for n<N

FIG. 3. Effect of increasing the number of trajectories on the convergence of

the HFACF. By increasing the number of trajectories in the ensemble aver-

aging method, the HFACF decays and converges. Each trajectory is simu-

lated for 50 ps phase space sampling, and a 25 ps correlation length is

calculated for the HFACF.

FIG. 4. The comparison of CC between time averaging and the two schemes

for trajectory generation in calculation of thermal conductivity for solid

argon. (a) By increasing the CC, the thermal conductivities calculated by

time averaging and ensemble averaging converge to the same value. The

values for thermal conductivity are normalized by the value from the time

averaging. (b) For time averaging, the ET increases linearly and indefinitely

with the CC. However, for ensemble averaging, the ET is a constant value.

The values of the ET are normalized by the ET for the simulation of one

trajectory using scheme 1 in ensemble averaging method.
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trajectories, to determine the slope of convergence at N, one

has many choices for how to pick the n trajectories out of the

total N. Different choices of individual trajectories for the

same value n, would subsequently lead to drastically differ-

ent results. For example, consider n¼ 1, where the user has

N possible choices. The variability of the results for a given

single trajectory would be large and one might conclude

different convergence behavior for different choices of n

trajectories. For this reason, the standard deviations of the

calculated values for thermal conductivity at each value of n

(e.g., different values of CC) are chosen as the representative

metric for how ensemble averaging converges to the final

value of thermal conductivity. In this way, the standard

deviations vary as two symmetric lines around the final con-

verged value of thermal conductivity, which is calculated by

inclusion of the total number of trajectories (N). The magni-

tude of the standard deviation decreases by increasing n,

which directly indicates convergence for the ensemble aver-

aging method. Figure 4(a) shows that both time averaging

and ensemble averaging methods converge to the same value

of thermal conductivity, which confirms that the system is

ergodic. Furthermore, using ensemble averaging, the CC

required to have a converged value of argon thermal conduc-

tivity was calculated to be 1.5 times larger than that of time

averaging (Fig. 4(a)). The comparison of ET is also pre-

sented in Fig. 4(b). It can be seen that continued phase space

sampling increases the ET for time averaging linearly and

indefinitely, but not for ensemble averaging, if all of the

trajectories are simulated concurrently. In this manner,

for the calculations of argon thermal conductivity, the ET in

ensemble averaging was determined to be 200 times less

than the ET in time averaging.

V. CASE STUDY 2: CRYSTALLINE SILICON; RESULTS
AND DISCUSSION

For solid argon, using ensemble averaging, the CC to

have a converged value of thermal conductivity was calcu-

lated to be 1.5 times larger than that of time averaging

(Fig. 4(a)). To make sure that our conclusion is independent

of the specific material and inter-atomic potential consid-

ered, we also calculated the thermal conductivity of crystal-

line silicon, using Tersoff potential.39 Our structure consists

of 1000 atoms, the temperature for the simulation is chosen

to be equal to 300 K, and a time step of 1 fs is considered for

the MD simulation. For silicon, in scheme 1 of trajectory

generation, we equilibrated the randomly chosen trajectories

in phase space for 12 ps (teq in Fig. 1(a)). For scheme 2 of

trajectory generation, the simulation time length for each of

the three stages was considered to be equal to 4 ps, which

results in the same total of 12 ps simulation time for scheme

2 (i.e., tITþ tHTþ tTT) as scheme 1. In addition, we chose the

high temperature in scheme 2 of trajectory generation to be

equal 400 K. We generated 512 trajectories using both of the

trajectory generation schemes. The effect of increasing the

number of trajectories on the convergence of HFACF for sil-

icon structure is shown in Fig. 5. By integrating the HFACF

from 0 to 400 ps, we calculated the thermal conductivity

of crystalline silicon to be 183 W/(m K). Considering

differences in inter-atomic potential and temperature, our

calculated value is in reasonable agreement with the reported

thermal conductivity values. For instance, value of 161 W/

(m K) is reported for 300 K using EDIP inter-atomic poten-

tial30 and value of 122 W/(m K) is reported for 500 K using

Tersoff inter-atomic potential.40 Figure 6 shows the compari-

son between time averaging and ensemble averaging for the

calculation of the thermal conductivity of silicon. To have a

converged value of silicon thermal conductivity, the CC of

the ensemble averaging is 2.5 times larger than that of the

time averaging. However, the ET for ensemble averaging is

10 times less than the time averaging, and it does not

increase with increased CC if the trajectories are simulated

FIG. 5. Effect of increasing the number of trajectories on the convergence of

the HFACF in silicon structure. By increasing the number of trajectories in

the ensemble averaging method, the HFACF decays and converges. Each

trajectory is simulated for 800 ps phase space sampling, and a 400 ps corre-

lation length is calculated for the HFACF.

FIG. 6. The comparison of CC between time averaging and the two schemes

for trajectory generation in calculation of thermal conductivity for crystal-

line silicon. (a) By increasing the CC, the thermal conductivities calculated

by time averaging and ensemble averaging converge to the same value. The

values for thermal conductivity are normalized by the obtained value from

the time averaging. (b) For time averaging, the ET increases linearly and

indefinitely with the CC. However, for ensemble averaging, the ET is a con-

stant value. The values of the ET are normalized by the ET for the simula-

tion of one trajectory using scheme 1 in ensemble averaging method.
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concurrently. The agreement between the time sampled and

ensemble averaged results again confirms the ergodic behav-

ior of the silicon system.

VI. CONCLUSION

In this report, we calculated the thermal conductivities

of solid argon and silicon structures using time averaging

and ensemble averaging methods. The ET in time averaging

is proportional to the amount of phase space data that is

needed to be collected from the simulations. However, the

same amount of phase space data can be collected from inde-

pendent trajectories, and if sufficient parallel processing

resources are available for the concurrent simulation of all

the trajectories, ensemble averaging can decrease the ET sig-

nificantly compared to time averaging. In addition, our cal-

culations showed that the CC for both time averaging and

ensemble averaging approaches are similar for thermal con-

ductivity calculations. Simulating solid argon and silicon

structures with two distinct inter-atomic potentials indicates

that our conclusions are independent of the material and

inter-atomic potentials. Furthermore, we presented two dif-

ferent schemes for the generation of uniformly spaced trajec-

tories in phase space. In contrast to scheme 1, which is the

direct random generation of trajectories throughout phase

space, scheme 2 generates all the trajectories from a common

initial point in phase space using velocity rescaling. It was

shown that velocity rescaling is an efficient method for dis-

persing the trajectories quickly and uniformly throughout

phase space. Although our calculations were based on classi-

cal MD, we believe that utilizing ensemble averaging meth-

ods with scheme 2 can also expedite the retrieval of the

results of more expensive simulations, such as FPMD.
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