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Abstract
Wederived a newmethod for direct calculation of themodal contributions to thermal conductivity,
which is termedGreen–Kubomodal analysis (GKMA). TheGKMAmethod combines the lattice
dynamics formalismwith theGreen–Kubo formula for thermal conductivity, such that the thermal
conductivity becomes a direct summation ofmodal contributions, where one need not define the
phonon velocity. As a result, theGKMAmethod can be applied to anymaterial/group of atoms, where
the atoms vibrate around stable equilibriumpositions, which includes non-stoichiometric
compounds, randomalloys, amorphousmaterials and even rigidmolecules. By usingmolecular
dynamics simulations to obtain the time history of eachmode’s contribution to the heat current, one
naturally includes anharmonicity to full order and can obtain insight into the interactions between
differentmodes through the cross-correlations. As an example, we applied theGMKAmethod to
crystalline and amorphous silicon. Themodal contributions at each frequency result from the analysis
and thereby allow one to apply a quantum correction to themode heat capacity to determine the
temperature dependence of thermal conductivity. The predicted temperature dependent thermal
conductivity for amorphous silicon shows the best agreement with experiments to date. TheGKMA
method provides new insight into the nature of phonon transport, as it casts the problem in terms of
mode–mode correlation instead of scattering, and provides a general unified formalism that can be
used to understand phonon–phonon interactions in essentially any class ofmaterials or structures
where the atoms vibrate around stable equilibrium sites.

Introduction

The phonon gasmodel (PGM) originated from the behaviors observed in homogenous crystalline solids and it
has exhibited remarkable success at describing the behavior of awide variety of solids,microstructures,
nanostructures andmolecules [1–4]. In homogenous stoichiometric crystalline solid compounds, where there is
both compositional and structural periodicity, the dynamicalmatrix determined from lattice dynamics (LD)
consists of symmetric unit-cell blocks and as a result, all of the eigen solutions correspond to planewave
modulated vibrations (e.g., propagatingmodes). Planewavemodulated vibrations exhibit a well-defined phase
and group velocity, because eachwave has a clearly definedwavelength, and there is a clear dispersion relation.
These eigen solutions/normalmodes of vibration then transport heat as they propagate, with a clearly defined
velocity, which is consistent with the PGMbased physical picture of their transport. In the PGM, eachmode
carries energy w with velocity kd dw/ andmean free path (MFP) ,L which is the product of the velocity and the
time betweenmode tomode energy exchanges (e.g., scattering events). This physical picture [2, 3, 5–9]works
well for homogenous crystallinematerials and the thermal conductivity of virtually any solid compounds and
their corresponding nanostructures can nowbe computed fromfirst principles [2, 3, 10, 11]. Given its success, it
has become the primary lens withwhich phonon transport is viewed.
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The problemwith ubiquitous usage of the PGM is that for systems that lack periodicity or compositional
homogeneity, the eigen solutions/normalmodes do not in general correspond to planewavemodulated
vibrationswith clearly identifiable wavelengths, and therefore one cannot define the phonon dispersion or
velocity. The lack of a clearly defined velocity is critical, because the PGMhinges on the velocity being defined in
order to properly describe amode’s contribution to thermal transport. Thus, for systems that lack periodicity,
such as amorphousmaterials, random alloys or smallmolecules, using the PGM to describe their phonon
transport is inconsistent with the atomic level vibrations. This issue is critical, because these classes ofmaterials
represent amajor fraction of thematerials used in various applications that involve heat transfer.

One class ofmaterials that have proved difficult to explain evenwith effectiveMFP based arguments is
amorphousmaterials. Several existing theories [12–15] haveworked towards resolving this long-standing issue,
but they are all based on the PGMand are therefore based on amodal description that is inconsistent with the
modes of vibration in amorphousmaterials, which are largely non-propagating. To our knowledge themajor
exception has been the seminal work of Allen and Feldman (A–F), whomade an important step forward by
conducting LD calculations on supercells of amorphous Si (a-Si) [16–18]. In doing so, they developed amodel
for thermal conductivity that was, for the first time, based on the actualmodes of vibration in an amorphous
material, which resolved themajor issuewith previouswork. Their results showed that there are distinct
classifications ofmodes in non-periodic systems and they introduced a new taxonomy for themodes, namely
propagons, diffusons and locons. A–F used theKubo formula for thermal conductivity to calculate the
contributions of differentmodes assuming the interactions between atomswere harmonic [16, 17]. In this sense,
it is important to note that they did consider anharmonicity to the extent that it is required for a temperature
gradient to develop, corresponding tofinite thermal conductivity. However, beyond this assumption, their
mathematical treatment of the atomic interactions was purely harmonic.

Theirmodel exhibited better agreementwith experimental data than previouswork and as a result they
concluded that anharmonicity was not likely to be important.Michalski [19], on the other hand, argued that
anharmonicity is important and amore recent study showed that the A–Fmethod exhibits less agreement with
experiments for amorphousmaterials other than a-Si [20]. This leads one to question if anharmonicity is the
critical feature that has beenmissing frompreviousmodels. It should also be emphasized here that
correspondencewith experimental data for thermal conductivity is the ultimate test for amodel, and to date a
model that exhibits excellent quantitative and qualitative agreement acrossmultiple amorphousmaterials has
yet to emerge. RecentlyHe et al [21] and Larkin et al [22]used normalmode analysis (NMA) to include
anharmonic effects on the contributions of propagons to the thermal conductivity of a-Si. By estimating the
phonon velocity using several approximations they calculated the propagon contributions, and their results
improved the agreementwith experimental data. However, because propagons only account for∼3%of the
total number ofmodes, their contributions to thermal conductivity remain controversial [18], even though their
contributionsmay be large on a permode basis. Despite these concerns, to date, the A–Fmodel has offered one
of the best explanations for the thermal conductivity of a-Si [16, 17].

Towards the goal of incorporating temperature dependent anharmonicity,MD simulations offer an ideal
platform for analyzing the interactions between atoms [23–26]. The critical challenge is to includemodal
analysis within the equilibriumMD (EMD) framework based on theGreen–Kubo (GK) formula.Here, EMD is
preferred for thermal conductivity calculations since for systemswhere periodic boundary conditions are
applied,finite size effects only affect the phonon extent/wavelengths and not the distance overwhich they can
transfer heat/MFPs [27]. Here, we present a formalism termed theGreen–Kubomode analysis (GKMA)
method, which is a combination of theGK andNMAmethods.

GKMA formalism

Consider an arbitrary collection ofN atoms that collectively form a stable rigid body, whereby each atom
vibrates around a stable equilibrium site. This group of atoms can have any internally inhomogeneous structure
and/or composition and need not be periodic in any sensewhatsoever. The only requirement is that the atoms
vibrate about their equilibrium sites, e.g., they do not diffuse as they do in liquids or gasses and their equilibrium
position does not change in time. This is the onlymajor requirement, because if the equilibriumpositions
change, then the normalmode shapes will also change and thus the initial basis used for analyzing the vibrations
would no longer be valid at later times.

For a systemwhere all atoms vibrate about stable equilibriumpositions, therewill in general exist 3N
collectivemodes of vibration that can be determined using the LD formalism [28] in the harmonic limit. The
most general approach, which can be applied to both crystalline and non-crystallinematerials is to perform the
LD calculations on the entire supercell as if it were a single unit cell, such thatwave-vectors are not used to
distinguish the solutions. Instead one can imagine treating the entire supercell as a single unit cell evaluated at
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k=0, yielding all 3Nmodes in a single calculation.With the 3Nmodes determined, one can then use the
individual polarization vectors for each atomparticipating in a givenmode as a basis for projecting the
anharmonic trajectory. It is important to recognize that one can naturally include anharmonicity to full order in
the dynamics by usingmolecular dynamics. Also, one can also incorporate the effects anharmonicity has on the
mode character by recalculatingmodes via LD at different temperatures [29] or via static structures that
correspond to the equilibrium structures at different temperatures. The primary effect anharmonicity has,
nonetheless, is that it causes the individualmode amplitude to vary in time as themodes exchange energy
amongst themselves and one can calculate an individualmode’s relaxation time [30] from anEMD simulation
usingNMA [24], regardless of whether it is a propagon, diffuson or locon.However, without a clear definition
for the phonon velocity, one cannot complete the calculation of thermal conductivity. Here, we utilize the same
concept of projecting theMD trajectory onto themodes obtained fromLD, but instead of using themode
amplitudes to calculate relaxation times, we conduct a directmodal decomposition of the heat current. Towards
this end, we first examine themeaning of the reverse transformation fromnormalmode coordinates back to
individual atom coordinates, where the normalmode amplitudes are calculated from

X n t m n tp x, 1
j

j j j( ) ( ) ( ) ( )*å= ⋅

and

X n t m n tp x, , 2
j

j j j( ) ( ) ( ) ( )*å= ⋅ 

where the displacement and velocity of each atom x and x can be obtained from the normalmode coordinates
via
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In equations (1)–(4) n denotes themode (e.g., the nth solution to the equations ofmotion),mj is themass of the
jth atom, and npj ( ) is the polarization vector which gives themagnitude and direction ofmotion for atom j in
mode n. Equations (1)–(4) are not new and are well establishedwithin the context of the LD formalism [28].

The critical enabling insight offered herein is the physicalmeaning associatedwith equations (3) and (4).
Here, equations (3) and (4) essentially state that at every instant, each atom’s position and velocity is composed
of their respective contributions from the different collective vibrations in the system. Thus, every atom’s
position and velocity are dictated by the respectivemagnitudes of each normalmode’s amplitude X nj ( ) and its
time derivative X n .j ( ) By thinking of each atom’s position and velocity as being composed of an exact sumof
modal contributions at every instant, we then postulate that if an individualmode’s contribution to the
displacement or velocity of an atom is used in an expression for the calculation of any other property that
depends on that atom’s position and/or velocity, onewould subsequently obtain thatmode’s contribution to
that property. For example, one could calculate eachmode’s contribution to the temperature of the system as
discussed in the supplementarymaterials. Similarly, towards the calculation of thermal conductivity, themodal
contributions to the velocity of each atom can be substituted into the heat flux operator derived byHardy [31], to
obtain eachmode’s contribution to the volume averaged heatflux at each time step in a EMD simulation
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/ Ei is the sumof potential and kinetic energy of atom i,V is the volume of the

supercell,Φj is the potential energy of atom j, and rij is the distance between atom i and atom j.
We can then take equation (5) and substitute it directly into theGK expression for thermal conductivity,
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to obtain an equation that expresses the thermal conductivity as a direct

summation over individualmode contributions
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Furthermore, one can also substitute the summation ofmodal contributions to the heat flux in both places
of the heatflux autocorrelation to obtain the thermal conductivity as a double summation over individual
mode–mode heatflux cross-correlation functions,

V

k T
n t n t

V

k T
n t n tQ Q Q Q, , 0 d , , 0 d . 7

n n n nB
2 0 B

2
, 0
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Equations (6) and (7) are the primary results termed theGKMAmethod, which now allows us to obtain each
mode’s contribution to the total thermal conductivity, andwe are guaranteed by equation (4) that the
summation in equations (6) and (7)will exactly recover the total GK thermal conductivity. Also, equation (7)
allows one to examine how the correlation between pairs ofmodes contributes to thermal conductivity.

One question that arises is whether the choice of decomposition using the velocities in equation (5) is correct
or not. For the heatflux operator, velocity is an obvious choice because it is present in both terms, and thus it
allows the heatflux to be cast as a single summation overmodes. It is acknowledged, however, that other
decomposition choices also exist. For example, one could decompose based on the difference in position r ,ij or

the force term ,
d

rd

j

i

F
but these termswould only decompose the second summation. Although the second

summation is well known to bemost important for solids, it is not clear if decomposition based on the positions
or forceswill provide any different information from the velocities. Checking all possibilities is beyond the scope
of the current investigation, but it is acknowledged that other possibilitiesmight be correct, or combinations of
different decompositionsmight even yield deeper insights, i.e., with regards to the details of themode–mode
interactions. Nonetheless, the ultimate test is whether or not a chosenmethod reproduces the results of well-
establishedmethods such asNMA for crystals where the PGM iswell founded. Furthermore, additional
comparisons against experiments over awide range of cases would also aid in testing the hypothesis that using
the velocity is the correct choice.Here, we have taken crystalline and amorphous silicon as afirst example and
continued testing of theGKMA formalism is warranted, similar to themany tests offirst principles based
approaches that have been applied to crystallinematerials in recent years [2, 3, 6, 32, 33]. It should also be noted
that even though the present study uses a simple empirical potential, theGKMAapproach can still be evaluated
fromfirst principles if onewere to use an accurate empirical potential, such as a Taylor expansion around the
equilibriumpositions [3].

The predominant viewpoint of phonon–phonon interactions is based on the PGMand is thought of in the
context of scattering. However, in theGK formalism thermal conductivity arises from correlation [34], which is
a fundamentally different way of viewing the physics. Onewould definitely expect that there is a strong
connection between the two viewpoints, especially in the context of crystallinematerials. However, it is
important to appreciate that theGK representation of eachmode’s contribution to thermal conductivity
through correlation is in and of itself complete and therefore provides a completely separate perspective.With
this inmind, one can plot themagnitude of the individual terms in the double summation in equation (7) as
elements of a 2Dmatrix, whereby themagnitude of the element represents the extent of correlation between
modes.We postulate that a strongmode–mode correlation suggests the twomodes somehow interact strongly,
frequently or for long periods of time and possibly in collaborationwith othermodes.

Another useful feature of theGKMAmethod is that one can reduce the computational time associatedwith
data output and post processing by combining any desired group ofmodes together to calculate the summed
contribution of their combined heatflux at one time. This is because itmitigates the need to separately output
and store or calculate the heatflux and correlations associated each individualmode. The details associatedwith
such data reductions are discussed in the supplementarymaterials and are particularly useful for studying large
structures.

Aside from these benefits themain power of theGKMAmethod (e.g., equations (6) and (7)) is that it now
allows for calculation of the eigenmode contributions to thermal conductivity directly without the need to
define phonon velocities. This is a critical issue for situations where the PGMbecomes questionable, such as for
disorderedmaterials.With theGKMAmethod, however, it is nowpossible to calculate the thermal conductivity
contributions of individualmodes for any arbitrary collection of atoms, as long as they vibrate around stable
equilibrium sites.

GKMAvalidation: crystalline silicon

The key question is whether or not the fundamental postulate theGKMAmethod is based on, is in fact correct.
Specifically, is it true that the individual terms of the sum in equation (6) correspond to the actualmodal
contributions to thermal conductivity? To answer this questionwe compared this interpretation of theGKMA
results with other well establishedmethods for a crystallinematerial, namely silicon, since it has been studied
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extensively [2, 3, 7]. Themolecular dynamics simulation details are given in the supplementary information and
figure 1(a) shows the thermal conductivity accumulation for crystalline silicon (c-Si) using equation (6) via the
Tersoff potential. Themost important comparison is the correspondence it exhibits with respect to the
accumulation computed from theNMAmethod using the same potential. The shapes of both theNMAand
GKMAaccumulations when using the same potential are almost identical and exhibit the same features. As
indicated infigure 1(b), the thermal conductivity contributions fromdifferent branches usingGKMAare also
close to theNMAandfirst principles results. Themain difference between theGKMAandNMAaccumulations
is the contribution from the transverse optical (TO)modes. In the PGM it is impossible for amode to exhibit a
negative contribution to thermal conductivity, and thus there exists no physical interpretation for negative
thermal conductivity contributions from the PGMperspective. In the context of GKMA, however, there is
nothing that requires the contributions of a givenmode to be positive as it is possible for amode’s heatflow to
remain correlatedwith the total heatflow, but be out of phase giving rise to a net negative contribution.
Nonetheless, in practice the total thermal conductivity is always positive, as is required by the second law. It is
interesting to note though, that for othermethods, the TOmode contributions are effectively zero in the context
of the PGM,while theGKMAapproach ascribes a slightly negative value. Still, there is good correspondence
between theNMAandGKMAaccumulations and also the amount attributed to each polarization as shown in
figure 1(b). This suggests that the fundamental postulate of theGKMA formalism and our interpretation of the
results is correct since it yields very similar contributions as theNMAmethod. It is alsoworth noting that the
accumulation results infigure 1 are in general agreementwith previous work [7] using the environment
dependent interatomic potential (EDIP) [35] aswell as first principles calculations using density functional
theory (DFT) and Fermi’s GoldenRule [3]. Since both EDIP andTersoff are a short ranged empirical potentials
[36] the agreement between them is better thanwithDFT,which includes longer ranged interactions and ismore
accurate. It should also be noted that the values reported infigure 1 are normalized to unity by the total thermal
conductivity predicted by each respectivemethod and potential. It is bothwell-known and appreciated that the
total values of thermal conductivity predicted by different potentials can vary greatly for crystallinematerials.
Nonetheless, it is useful to compare the results of different potentials on a normalized basis, so that one can
assess whether or not the relative contributions of differentmodes are the same.Qualitatively, figure 1 shows
that all four sets of results indicate the same relative contributions, despite the significant disparity in total
thermal conductivity. This correspondence serves as additional evidence that equations (6) and (7) do in fact
correspond to the thermal conductivity contributions associatedwith a givenmode. It is also important to note
thatfigure S1 in the supplementarymaterials shows the absolute thermal conductivity comparison between
NMAandGKMA result and the total values fromGKMA (130Wm−1 K−1) andNMA (120Wm−1 K−1) differ
by less than 10%at 300 K. Furthermore, additional total thermal conductivity calculations are given in the

Figure 1. (a)Thermal conductivity of c-Si accumulation vs. wavelength. (b)Comparison of each phonon polarization’s contribution
to the thermal conductivity of c-Si. The six polarizations are the transverse acoustic (TA), longitudinal acoustic (LA), transverse optical
(TO) and longitudinal optical (LO).
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supplementarymaterials for different potentials often used for studying silicon, such as the EDIP and the
Stillinger–Weber potential.

Application ofGKMA to amorphous silicon

Based on this initial validation, we applied theGKMAmethod to amorphous silicon (a-Si), which is a system that
cannot bewell described by previousmethods. The inverse participation ratio (IPR) indicates the extent to
which amode is localized and does not involve all of the atoms in the system as awidespread collective vibration.
Propagons and diffusons are delocalized and therefore have small IPR. Locons, on the other hand, are localized
vibrations and therefore exhibit high IPR, which infigure 2(a)manifests at the higher frequencies. The density of
states is also shown in figure 2(b) alongwith other published results [17, 20] serving as an indication that the
potential provides a good description of the spectrumof vibrations in a-Si.We applied theGKMA to analyze the
modal contributions to thermal conductivity in a-Si for allmodes, where propagons, diffusons and locons are all
treated the sameway, via equation (7). The normalized thermal conductivity accumulation function of non-
propagatingmodes (diffusons and locons) versus phonon frequency for a-Si is shown infigure 2(c). For
comparison, the accumulation of non-propagatingmodes from theA–Fmethod is also shown, whichwas
calculated using the implementation in theGeneral Utility Lattice Program (GULP) [37].

Infigure 2(c), theGKMA result, which includes anharmonicity, predicts a similar trend as theA–F result at
room temperature for non-propagatingmodes, which does not incorporate the effects of anharmonicity on the
mode–mode interactions. TheA–F result here does not include the propagon contributions to thermal
conductivity [22]. However infigure S2, when attempting tomake the best comparison between experiments
and differentmodels, we also included the propagon contributions determined by Larkin andMcGaughey [22]
alongwith the A–F result (as labeled). Atfirst thismight seem to suggest that anharmonicity is not important.
However, examination of the 2D cross-correlation terms (e.g., equation (7)) shown infigure 3, indicates that
there is significant correlation betweenmodes with different frequencies. Infigure 3(a) the diagonal terms are
the largest, but they only account for∼70%of the total thermal conductivity at room temperature. Therefore

Figure 2. (a) Inverse participation ratio ofmodes in a-Si; (b) phonon density of states, black curve is from [17] and green curve is from
[20]; (c)normalized thermal conductivity accumulation (fromnon-propagatingmodes (diffusons and locons)) versusmode
frequency for a-Si at 300 KusingGKMAandA–F theory at 300 K. The dotted gray lines are estimated cut-off between propagons and
diffusons and between diffusons and locons.
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cross-correlations, which arise due to anharmonicity, are responsible for approximately 30%of the thermal
conductivity.What is also remarkable about the result infigure 3 is the fact that there is a distinct change in the
magnitude of the correlations around 16 THz. This transition coincides with the transition to localizedmodes
(e.g., locons—seefigure 3). Here, it is important to note that no information regarding the nature of themodes
(e.g., propagon, diffuson, or locon)was used to generate figure 3. Everymode infigure 3was treated the same
and nofilteringwas used to highlight the feature at 16 THz. Instead, a natural feature in themode–mode
correlations arises at the frequencywhere themode character switches from spatially delocalized to localized. In
figures 3(b) and (c)wehavefiltered out the auto-correlations (cross-correlations only) and cross-correlations
(auto-correlations only) respectively tomake the featuresmore clear. Figure 3(c) shows that the locons do not
have strong auto-correlations and the accumulation infigure 2 is consistent with previous assertions that locons
exhibit a negligibly small contribution to thermal conductivity [16, 17]. One result of the A–Fmethod is that the
correlations betweenmodes (e.g., interactions) should bemost significantwhen the frequency of twomodes is
similar.However, using theGKMAapproach,figure 3(b) suggests thatmodeswith different frequencies can all
interact, as there is no obvious increase as one approaches the diagonal. It is interesting to note, nonetheless, that
despite these differences, bothGKMAand the A–Fmodel yield a similar normalized accumulation plot (see
figure 2(c)), even though the total value at 300 K predicted byA–F (1.1Wm−1 K−1) is∼30% lower thanGKMA
result. The samemapping ofmode–mode correlations for c-Si is presented infigure S5 in the supplementary
materials for comparison.

In comparing themagnitudes of thermal conductivity values produced byGKMAand theA–Fmethod, the
A–F result underestimated the total thermal conductivity of amorphous silicon by 30%at 300 K.Here themost
relevant experimental result is taken to be themeasurements of Cahill et al [38], because it included the
minimumhydrogen concentration (1%) and the hydrogen concentration in the simulations is 0%. It is

Figure 3. (a)Thermal conductivity (TC) contributions frommode–mode correlations of amorphous silicon; (b)TC contributions
from justmode–mode cross-correlations of amorphous silicon; (c)TC contributions fromonlymode–mode auto-correlations of
amorphous silicon.
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acknowledged that there is awide spread in themeasured thermal conductivities for a-Si [38], but the differences
must somehow relate to the underlying structure and composition of the actual samples used. Conceptually, if
the atomic level composition and structurewere accurately known, one could simply construct supercells that
exactlymatch the experimental structures. If this were possible, the resulting thermal conductivities should
match if the theory is correct, and evenmore importantly theGKMAapproachwould be able to provide insight
onwhy the thermal conductivity becomes so high in certain cases [38] by elucidatingwhichmodes are
responsible for the difference.

Since theGKMAmethod allows us to determine the thermal conductivity accumulationwith respect to
phonon frequency, we can apply a quantum correction to the classicalMDGKMAresults at different
temperatures and compare to the experimental data [38, 39] at all temperatures. The underlying assumption in
doing so is that, only the quantum effect on the specific heatmust be accounted for in this case. Turney and
McGaughey [40] have clearly shown that for crystallinematerials quantum corrections are ill-founded because
there are two quantum effects, one on the heat capacity, but also a second one on the scattering rate due to
incorrectmode–mode occupations. This second effect is both important and intuitive, as one could envision
that in the limit that only a singlemode is excited in the system, the time it takes for it to couple to othermodes
and relax towards equipartition is a strong function of the amplitudes of othermodes. Thus, when othermodes
are simultaneously excited it affects the rate at whichmode–mode interactions occur. Turney andMcGaughey
[40] have clearly shown that for crystallinematerials this effect is crucial, and because classicalMD trajectories
do not yield the correct quantummode amplitudes observed at low temperatures,MD incorrectly predicts
higher scattering rates. However, even though this issue is critical for bulk homogenous crystallinematerials,
one could envision other situations where another scatteringmechanism dominates the phonon relaxation
times, such as boundary [41], impurity [42] or structural scattering [13]. In such situations, where the phonon–
phonon scattering processes (e.g., Umklapp-scattering) are not the primarymechanism governing the low
frequencymode thermal conductivity contributions, onewould imagine that the error associatedwith incorrect
mode–mode occupations at low temperatures could becomenegligible.

For example, consider usingMD to calculate the temperature dependent thermal conductivity of a silicon
nanowire [43–45], where themajority of the low frequency phonon contributions are limited by scatteringwith
the boundaries. In such a situation the net relaxation time formostmodes is dictated by the nanowire
dimensions and not the detailedmode–mode interactions, which require themode occupations to be correct.
This is especially the case for the low frequencymodeswhich are the onlymodes that remain excited at low
temperatures. As a result, in such a situation, onewould imagine that application of a quantumheat capacity
correctionwould subsequently lead to good agreement with experimental data. Furthermore, in such a
situation, onewould expect to achieve good agreement with experimental data, evenwith interatomic potentials
that poorly describe the bulk behavior, such as the Tersoff potential [36]. To illustrate this principle at play in the
systems of interest here, we calculated the thermal conductivity of c-Si and a-Si using three different potentials as
shown infigures S3 and S4 in the supplementarymaterials. These calculations confirmour assertion that even
though different potentialsmay give substantial differences in thermal conductivity for crystals they yield very
similar values for the amorphousmaterials. It is argued here, that the situation for amorphousmaterials is likely
the same as the nanowire case. The idea is that anothermore dominant scatteringmechanism than pure
anharmonic phonon–phonon scattering, namely structural scattering [13], may dominate the low frequency
contributions in amorphousmaterials, thereby justifying the usage of a quantum correction on the heat capacity
alone.

Here it should be emphasized that, fundamentally, anharmonicity is a prerequisite for impurity, defect or
boundary scattering, becausewhen such a scattering event occurs, the energy is still shared exclusively amongst
phonons. As a result, even in the purely harmonic limit, boundary, defect or impurity scattering alone does not
yieldfinite thermal conductivity. This is because some degree of anharmonicity is always needed in order to
establish a temperature gradient and observe finite thermal conductivity in the first place. Some degree of
anharmonicity is always assumedwhen one studies thermal conductivity, even if it is formally neglected beyond
the basic assumption that it establishes finite thermal conductivity, as was noted in the original paper by A–F
[46]. However, even though some degree of anharmonicity is a prerequisite for any scattering by structural
features such as defects, boundaries or surfaces, the structural aberration itself is the root cause of the associated
mechanism for thermal resistance. Consequently, it is quite possible that a potential’s ability to describe
anharmonicity accuratelymay bemuch less important in amorphousmaterials as compared to crystalline
materials. Thus, onewould expect that even amodel such as the Tersoff potential, which has been noted to
poorly describe the thermal conductivity of c-Si [47], could be sufficient for describing the behavior in a-Si.
Here, we test this assumption by applying a quantum correction to theGKMA results, which only imparts a
correction to the specific heat component of eachmode’s thermal conductivity contribution via the ratio of the
quantum to classical specific heat [48] (see equation (S5) in supplementarymaterials.)
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Figure 4(c) shows a comparison of the quantum corrected thermal conductivity usingGKMAas compared
to experiments, which shows best agreement of allmodels to date [16, 38, 49]. TheGKMA results infigure 4(c)
were generated by a linear interpolation of the normalized thermal conductivity accumulation functions at 100,
300, and 800 K (see supplementarymaterials for details). The un-normalized accumulations at each
temperature are shown infigures 4(a) and (b), which indicate that a significant shift in the contributions occurs
at lower temperatures. The fact that the non-quantum correctedMD result increases at lower temperatures
shows that in order to obtain the correct temperature dependence, the frequency dependencemust be obtained
fromGKMA first, so that the quantum correction can correctly scale eachmode’s contribution. At lower
temperatures, the quantum correction nullifies the higher frequency contributions. However, it is still
important to correctly calculate seemingly over predicted values withMD for the lower frequencies, whichwhen
quantum corrected, exhibit excellent agreementwith the experimental data [38]. This serves as initial evidence
that the thermal conductivity contributions from low frequencymodes in disorderedmaterialsmay bemore so
governed by scatteringwith the structure itself, as opposed to the pure anharmonic phonon–phonon scattering.
Nonetheless, further testing of these hypotheses are warranted, using a variety of othermaterials to establish to
what extent the approach used hereinwill in general yield accurate correspondencewith experimental data.

Conclusions

In this report we presented and tested a newmethod for calculating themodal contributions to thermal
conductivity termed theGKMAmethod.With the exception of A–F, all previousmodels that incorporate both
anharmonicity andmodal analysis have been restricted to describing the thermal conductivity in terms of the
PGM,whichmay only be valid for crystallinematerials. However, with theGKMAmethod, one can calculate the
modal contributions to thermal conductivity for any arbitrary collection of atoms, whereby the atoms vibrate
around stable equilibrium sites leading to a stable set of normalmodes. TheGKMAmethod is thereforemore
general and can be applied to disordered solids (i.e., amorphous, alloys, non-stoichiometric compounds), as well
as individualmolecules that are rigid, butmay not exhibit long-range periodicity. Herein, we validated the
fundamental postulate that theGKMAmethod is based on, by calculating the thermal conductivity of crystalline
silicon, which showed good agreement with theNMAmethod for the same potential. For disordered solids, the
PGM is difficult to rationalize, because the phonon velocities are notwell defined.However, since theGKMA
method is based on linear response theory, it does not require definition of the phonon velocity to determine a
mode’s contribution and therefore ismore general.

We applied theGKMAmethod to a-Si and even though the accumulations were similar to that of theA–F
method, themapping of the cross-correlationmagnitudes indicated thatmodes with different frequencies do
interact, which is a result of anharmonicity. To obtain deeper insight into themode–mode interactions, we also
calculated themagnitudes of themode–mode cross-correlations. Interestingly, the transition between diffusons
and loconswas a naturally distinguishing featurewithin the correlationmap. This further indicated that the
mode taxonomy introduced byA–F, is not only useful, but is an excellent descriptor for the nature of themode–

Figure 4.Thermal conductivity accumulation of a-Si at 100, 300 and 800 Kwithout (a) andwith (a) quantum correction; (c) thermal
conductivity versus temperature for a-Si comparingwith experiments [38] and simulation results fromothermethods [16, 49].
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mode interactions, as evidenced by the distinct differences for localizedmodes. Lastly, we showed the
comparisonwith experimental data for the temperature dependent thermal conductivity and theGKMA results
show excellent agreement. By applying theGKMAmethod to a disordered system, it is nowpossible to obtain a
better understanding ofmodal contributions to thermal conductivity in systemswhere phonon velocities are
notwell defined and application of the PGMbecomes questionable.
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