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Thermal interface conductance in Si/Ge superlattices by equilibrium molecular dynamics
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1Laboratoire d’Energétique Moléculaire et Macroscopique, CNRS UPR 288, Ecole Centrale Paris, F-92295 Châtenay-Malabry, France
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We provide a derivation allowing the calculation of thermal conductance at interfaces by equilibrium molecular
dynamics simulations and illustrate our approach by studying thermal conduction mechanisms in Si/Ge
superlattices. Thermal conductance calculations of superlattices with period thicknesses ranging from 0.5 to 60 nm
are presented as well as the temperature dependence. Results have been compared to complementary Green-Kubo
thermal conductivity calculations demonstrating that thermal conductivity of perfect superlattices can be directly
deduced from interfacial conductance in the investigated period range. This confirms the predominant role of
interfaces in materials with large phonon mean free paths.
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I. INTRODUCTION

In recent years, interfacial thermal transport has become
a major subject of interest1,2 with regard to two important
technological applications, namely, thermoelectric materials
development3 and microelectronics thermal management.
Thermoelectric materials require low thermal conductivity,
which may be potentially tuned by nanoscale interfaces
between dissimilar crystalline materials on one hand4 and
grain boundaries on the other hand. Here the objective
is to lower the overall thermal conductivity by increasing
the number of low conductance interfaces. In the case of
microelectronics, the devices are typically constructed from
many layers of different materials and the interfacial thermal
resistance impedes the removal of heat. Here, the goal is to
increase the interfacial conductance so that heat generated
by the Joule effect can be removed and the package can
be cooled more effectively.5 Thermal properties of such
nanostructures are generally strongly influenced by phonon
scattering at boundaries and interfaces and a fundamental
understanding of the atomic level physics that governs the in-
terfacial conductance is needed.6–8 In addition, heat transfer in
nanomaterials is strongly impacted by the presence of defects
(vacancies, dislocations, impurities, etc.), which generate sup-
plementary phonon scattering in the material. Consequently,
two important questions arise regarding heat conduction in
solids including interfaces: first, what is the contribution of
interfacial scattering compared to that of internal phonon-
phonon scattering, and second, what are the mechanisms of
interfacial transmission of the vibrational modes? Extensive
modeling of this contact resistance has brought to light two
models,9 namely, the acoustic mismatch model, assuming
a single direction of transmission and of reflection, and
the diffuse model, which considers equiprobable scattering
directions. These two models remain, however, incomplete
and since thermal conductance has been widely studied by
several complementary numerical approaches such as the
Boltzmann transport equation, molecular dynamics (MD)
simulations, atomistic Green’s function (AGF) methods10–12

[also referred to as nonequilibrium Green’s function (NEGF)],
and first-principle calculations. Each of these methods has

advantages and disadvantages but our discussion will be
restricted to MD simulations recalling that these are based on
solving the classical dynamics of N -body systems and are thus
particularly well suited for recovering statistical properties
(e.g., response functions, thermodynamics properties, etc.).
MD calculations of thermal conductance currently rely on a
nonequilibrium approach where a constant heat flux is fixed
across the system13–17 through two thermal reservoirs obtained
with local velocity rescaling. As a result, a temperature
drop can be estimated at the interface region, allowing the
estimation of thermal conductance. Although this procedure
is direct and relatively convenient to implement, it excludes
periodic boundary problems and suffers from disadvantages.
Constant rescaling of the atomic velocities in the thermostats
introduces artificial scattering and, consequently, the number
of atomic layers forming the separation distances between the
reservoirs and the characteristic time of the thermostats are
critical parameters. We propose a microscopic approach for
calculating thermal conductance at interfaces based on the
tracking of equilibrium fluctuations, which presents analogies
with the well-know Green-Kubo (GK) method18 for thermal
conductivity.19 Sections II and III provide a rigorous derivation
of the thermal conductance revealing a clear physical picture
of thermal interfacial transport. We develop how such a
calculation can be implemented in MD and how to properly
compute thermal conductance at thermal equilibrium. In
Sec. IV, we study the thermal conductance mechanisms of
Si/Ge superlattices at various temperatures and with various
period thicknesses. Further comparison with Green-Kubo
thermal conductivity calculations shows that it can be directly
deduced from the sum of the interface resistances in perfect
lattices with periods exceeding 2 nm.

II. THEORY OF INTERFACE CONDUCTANCE
AT THERMAL EQUILIBRIUM

In the following, we considered two systems, A and B, in
thermal interaction at the same equilibrium temperature. The
total Hamiltonian can be written as H = HA + HB , with HA

and HB being defined from a local energy at each atomic site
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as follows:

HA/B =
∑

i∈A/B

hi =
∑

i∈A/B

p2
i

2mi

+ Vi, (1)

where pi and mi refer to the atom i’s momentum and mass,
respectively. In the case of pair potential interactions, for
instance, Vi = ∑

j �=i V (ri − rj )/2 and exactly half of the
interaction term belongs to HA and the other half to HB .

To obtain the interfacial thermal conductance, we use the
linear response formalism20 where an infinitesimally small
temperature difference is applied between systems A and
B. This latter temperature difference, �T = TB − TA, is
sufficiently small that temperatures TA and TB in systems A

and B are uniform and those latter systems are considered
as thermal reservoirs. In the general case, TA = T − λ�T and
TB = T + (1 − λ)�T with 0 < λ < 1. We further assume that
the system A + B is insulated and its total energy EA + EB =
constant.

The key simplifying assumption in our derivation is the
assumption of the “quasiequilibrium” form of the nonequilib-
rium distribution function as

ρ = e−βAHA−βBHB

Z
(2)

= e−βH
[
1 − βHfield + O

(
β2H 2

field

)]
Tre−βH

[
1 − βHfield + O

(
β2H 2

field

)] . (3)

In the classical case, the trace has to be understood as
TrA = ∫

dpdqA(p,q). The above Hfield term actually defines
the perturbation Hamiltonian, which can be obtained assuming
a small �T and using a Taylor expansion of the distribution
function. The justification for such a nonequilibrium distribu-
tion is provided by Mori et al.21

The expression of the perturbation Hamiltonian resulting
from the applied temperature difference is

Hfield = [λHA − (1 − λ)HB]�T/T . (4)

One can intuitively understand the above result by noting that
the temperature difference is the quantity which “pulls” the
energy up or down (�T/T is the thermodynamic variable
conjugate to energy).

Under a perturbation field, the expectation value of any
operator Q becomes 〈Q〉 = TrρQ. ρ is the nonequilibrium
distribution function defined just above yielding

〈Q〉 = (q − β〈QHfield〉)/(1 − β〈Hfield〉) (5)

= q − β〈QHfield〉 + βq〈Hfield〉 + O
(
β2H 2

field

)
, (6)

where q = TrρoQ is the equilibrium expectation value of Q.
Therefore 〈Q〉 − q = −β[〈QHfield〉 − q〈Hfield〉]. Substituting
Hfield with its expression in Eq. (4), we have

〈Q〉 = β
�T

T
〈Q[−λHA + (1 − λ)HB]〉, (7)

where the average on the right-hand side is with respect to the
equilibrium distribution. The constant q maybe reabsorbed in
the definition of Q so that its thermal equilibrium average is
zero.

The static response function χo to the applied temperature
difference is defined by〈Q〉 = χo �T , and taking the parame-
ter λ = 0 provides the relationship between the static response

and (equal-time) correlations in the system:

χo = 〈QHB〉
kBT 2

. (8)

Setting Q = ḢA allows us to find out how much heat is
added to the subsystem A per unit time when a temperature
difference �T is applied between A and B. Using the adiabatic
condition 〈HA + HB〉 = constant implies that any other choice
of λ will lead to the same result.

The definition of the thermal conductance G between
systems A and B,

d〈HA〉
dt

= G�T, (9)

combined with Eq. (8) provides

G = 1

kBT 2

〈
dHA(t)

dt
HB(t)

〉
. (10)

The derivative needs to be evaluated at the same time as
HB is evaluated, since we are dealing with an equal-time
correlator. As such, it seems that the numerical computation
of G would require very little time, just enough to do a
proper ensemble average in order to reduce the statistical
errors below a specified threshold value. This is in contrast
to the usual GK formula19 which involves a time integral
and also needs to be time and ensemble averaged. We can
also derive a more familiar-looking formula by considering
HB(t) = ∫ t

−∞ ḢB(t ′) dt ′. Using the change of variable t ′ =
t − τ , we can then reexpress the thermal conductance as the
time integral over the dissipated power correlator:

G = 1

kBT 2

∫ t

−∞
〈ḢA(t)ḢB(t ′)〉dt ′ (11)

= − 1

kBT 2

∫ ∞

0
〈ḢA(t)ḢB(t − τ )〉dτ

= − 1

kBT 2

∫ ∞

0
〈ḢA(0)ḢB(−τ )〉dτ (12)

= − 1

kBT 2

∫ ∞

0
〈ḢA(τ )ḢB(0)〉dτ (13)

= 1

kBT 2

∫ ∞

0
〈ḢA(τ )ḢA(0)〉dτ, (14)

which looks like the usual GK formula. In the above deriva-
tion, we have assumed time-translational invariance, energy
conservation, ḢB = −ḢA, and used ḢB(t ′) = −ḢB(t − τ ),
where the time derivative in the left term is with respect to t ′
and in the right term it is with respect to τ .

An alternative formula, similar to the one often used for the
diffusion coefficient can also be proved in this case:

G = 1

kBT 2
lim
t→∞

〈[(HA(t) − HA(0)]2〉
2t

. (15)

The usage of this form also requires long simulation times until
the right-hand side converges to a constant value. Therefore, it
seems that the use of Eq. (10) would be computationally more
advantageous, and the conductance can be calculated within a
canonical ensemble, requiring just an ensemble average over
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uncorrelated equilibrium configurations generated even with a
thermostat.

III. IMPLEMENTATION FOR MOLECULAR DYNAMICS
SIMULATIONS

A. Use of equations of motion to compute
interfacial conductance

It is possible to obtain a direct method for computing
thermal conductance of atomic systems with many degrees of
freedom by considering the Hamiltonian equations of motion
to express the time derivative ofHA:

dHA(t)

dt
=

∑
i∈A∪B

(
∂HA

∂pi

ṗi + ∂HA

∂qi

q̇i

)
,

but

ṗi ≡ −∂H

∂qi

= FA
i + FB

i , (16)

q̇i ≡ ∂H

∂pi

= pi

mi

= vi, (17)

∂HA

∂qi

= −
(

FA
i + 1

2
FB

i

)
for i ∈ A, (18)

∂HA

∂qi

= −1

2
FA

i for i ∈ B, (19)

FS
i being the force from the side S on atom i. The last

two equations carry a factor of 1/2 because half of the A-B
interaction energy in HA and the other half in HB have been
included [see the line following Eq. (1)]. Finally,

dHA(t)

dt
= 1

2

[ ∑
i∈A

vi F
B
i −

∑
j∈B

FA
j vj

]
, (20)

which is the net power (or heat flux) absorbed by system A.
Considering pairwise interactions, the net power simplifies to

dHA(t)

dt
= 1

2

[ ∑
i∈A;j∈B

vi − ∇iV (rij ) − ∇jV (rij ) vj

]
(21)

= −
∑

i∈A;j∈B

(vi + vj )

2
∇iV (rij ). (22)

We should note that if A and B are strongly connected,
the nonequilibrium molecular dynamics (NEMD) temperature
drop will be smooth and span over the atoms linking A to B.
The temperature difference will be, however, measured away
from the interface atoms and deep into reservoirs A and B. The
separation between A and B is in this case somewhat arbitrary,
but the heat flux exchanged between A and B will always be
the same in the steady state regardless of the choice of the A-B
boundary, and therefore the final thermal conductance should
not depend on the latter. When studying near-field radiative
transfer between dielectric nanoparticles, Dominguez et al.22

also proposed to retrieve the conductance from equilibrium
heat flux.

FIG. 1. (Color online) Spatial configuration of the superlattice
junctions. Thermal conductance is investigated along direction Z.

B. Superlattice Si/Ge model for equilibrium molecular
dynamics (EMD) simulations

In this work, we have implemented the three-body
Stillinger-Weber interatomic potential23,24 to reproduce the Si-
Si and Ge-Ge covalent interactions. Potential parameters have
also been combined according to the mixing rules described
by Ref. 25 to model the interfacial Si-Ge interactions.

The structure is relaxed using a steepest descent energy
minimization algorithm (sd). Atomic trajectories are then
calculated in the NVE (microcanonical ensemble) ensemble
with a time step of 1 fs. Thermal equilibrium has been achieved
within 500 ps. Thermal conductance simulations have been
operated on Si/Ge superlattices having a geometrical config-
uration similar to that presented in Fig. 1.

Heat conduction mechanisms are studied in the Z direction
and periodic boundary conditions are applied in the three
directions. This latter condition yields a Si/Ge interface of
infinite cross section in the plane perpendicular to direction
Z and involves a periodicity Lp = N (aGe + aSi) in the same
direction, where aSi/Ge stands for the lattice parameters and N

is the number of unit cells. We included at least two contacts
in the periodic supercell. We assume here a perfect interface
between Si and Ge in which there is perfect lattice matching.
This is often achieved through the introduction of coherency
strain in one or both of the phases. The lattice parameter
difference of 4% between Si (0.543 nm) and Ge (0.565 nm) has
been matched to 0.554 nm in the direction perpendicular to the
interface. This relaxation procedure has already been presented
in various publications.26 The resulting lattice parameters in
the direction parallel to the contact correspond, respectively,
to 0.531 and 0.573 nm for Si and Ge phases.

C. Retrieving thermal conductance from EMD simulations

Obtaining thermal conductance from equilibrium thermal
fluctuations according to Eq. (14) requires large ensemble
averages. In practice, tens of trajectories with different atomic
random velocities distributions have to be considered to ensure
an accurate prediction. Consequently, the thermal conductance
is calculated through a two-step procedure.
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FIG. 2. (Color online) Thermal conductance obtained at 400 K for
a superlattice with a period thickness of 40 nm with 30 independent
runs. The average is plotted by the bold line.

(i) Several MD simulations are performed to capture the
time-dependent fluctuations of the local net heat flux following
Eq. (20) at a given equilibrium temperature.

(ii) The resulting averaged heat flux is then injected into
Eq. (14) to retrieve the thermal conductance in a region where
the integral of the autocorrelation has converged. Periodic
boundary conditions are fixed in our calculation. From this,
as one seeks to compute heat exchanges from Si to Ge,
two contact surfaces S have to be considered. The resulting
conductance calculated per unit square has then to be normaled
by 2S.

Figure 2 illustrates our methodology by reporting the
thermal conductance obtained for a 40-nm period at 400 K
with 30 independent runs. The number of ensemble average
strongly depends on the junction cross section: enlarging the
number of atoms forming the contact allows reducing the
net heat flux fluctuations. The larger the contact surface is,
the better the statistics is and ensemble averaging can be
optimized. By considering now the resulting autocorrelation
function (Fig. 3), it can be found that after a time ranging
from 20 to 50 ps the correlation function reaches zero. As
a result, we have considered autocorrelations of the net flux
defined with 2 × 105 net flux points sampled every 10 fs. The
resulting integral is found to converge between 30 and 50 ps at
400 K. It is important to check that the convergence is ensured
consistently by comparing the different conductance values
obtained as a function of the number of trajectories for a given
time-correlation length.

We first compared our approach with available data in the
literature by simulating a single Si/Ge junction (2 slabs of
10 nm) with no periodic boundary conditions at 400 K. We
found a thermal conductance of 3.7 W/m2 K which is similar to
what has been recovered by Zhao and Freund27 and Landry and
McGaughey.28 This validation allows us to focus on periodic
systems in order to capture the relevant mechanism at play in
Si/Ge superlattices.

FIG. 3. Net heat flux autocorrelation function at 400 K. The inset
shows a zoom of the 0- to 2-ps time interval.

IV. RESULTS FOR SI/GE SUPERLATTICES

A. Three-body vs two-body contribution to
the interfacial heat flux

The three-body Stillinger-Weber potential23 is one of
the widely used empirical potentials for modeling atomistic
properties of silicon and germanium. It has the particularity
that pairwise interaction (two-body) occurs between the first
nearest neighbors and another interaction that depends on the
bonding angle between one atom of the unit cell and each of
its second neighbors.

When considering the net flux computation, the interfacial
interaction can be decomposed as a sum of two-body and
three-body terms. Figure 4 shows a typical three-body interface
configuration where atomic triplet i, j , and k forms an interface
with i and j belonging to the same material but not k. In this
particular illustrative example, when one assesses the different
interface interactions, two-body contributions (Fik) as well as
three-body contributions (Fj and Fk) have to be included in
the net flux estimation of (20).

FIG. 4. (Color online) Interface configuration including two-
body and three-body interactions. The three-body contribution to
the net heat flux is expressed as Q3 = fk · vj − fj · vk.
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FIG. 5. (Color online) Three-body and two-body contributions to
the thermal conductance of a double Si/Ge junction at 400 K. No
ensemble averages have been considered here.

The method we proposed is general and can be applied
to any potential. All that is needed is that the total system
potential energy be written in terms of individual atom
potential energy contributions. Essentially all potential forms
can be rewritten in this format, even if the many-body terms
have to be partitioned into thirds or fourths according to the
atoms participating in the interaction. Here, the three-body
contribution to the net flux between each triplet of atoms
(i,j,k) depends on the definition of the interface, namely, the
type of atoms involved in the evaluation of the interaction. As
illustrated in Fig. 4, the three-body contribution to the net heat
flux is expressed as Q3 = fk · vj − fj · vk.

This raises the question of how each set of interactions
contributes to the conductance. We report the contribution to
the thermal conductance for these two types of interactions in
Fig. 5. In fact, the three-body contribution does not contribute
significantly to Si/Ge interfacial heat transfer which remains
fully driven by pairwise two-body interaction forces. This
result suggests that the interfacial phonon scattering occurs
predominantly in the vicinity of the first Si/Ge pair of atomic
layers forming the contact over a distance smaller than 0.2 nm.
One can potentially tune interface conductance in a significant
way by including atomic defects within these first atomic lay-
ers. It also reveals that any consistent numerical/experimental
comparisons rely on a perfect knowledge of the atomic contact
configuration.

B. Temperature dependence of superlattice
interface conductance

We calculated the thermal conductance of a Si/Ge super-
lattice with a layer thickness of 20 nm on a wide range of
temperatures. This section aims at demonstrating the impact
of anharmonicity at the interface. As inelastic processes occur
at high temperatures, additional vibrational relaxation can
be expected for phonon modes traveling at the interface.
The coupling probability with compatible modes traveling
on the other side of the junction can be influenced by the

FIG. 6. (Color online) EMD thermal conductance predictions of
a Lp = 20 nm Si/Ge superlattice over 300 K to 1000 K.

local temperature. We performed this calculation according to
the relaxation procedure describe in Sec. III. We found that
conductance at interfaces is sensitive to the sample pressure
and consequently it is important to monitor carefully the
pressure obtained for the higher equilibrium temperatures
to eventually relax the structure with additional runs in the
isobaric-isothermal ensemble.

We reported (Fig. 6) the thermal interface conductance
of superlattices over a temperature ranging from 300 K to
1000 K for a period of Lp = 20 nm. Other work reported
interesting results on a single interface.26,28 Here, it can be
seen that the temperature does not affect the conductance
of the interface and clearly saturates around the value of
∼0.75 × 109 W/m2 K−1. Our calculations are performed
in the classical approximation; equipartition of the thermal
energy excludes any quantum effect in the phonon population.
At the higher temperatures, it seems that phonon-phonon
scattering is unlikely to occur for a 20-nm period. Other MD
calculations of Si/Ge superlattice thermal conductivity tend
to confirm this trend.29 Note that this constant temperature
is in contrast with previous NEMD calculations performed
on individual Si/Ge/Si and Ge/Si/Ge junctions showing that
resistance increases with increasing temperatures.26,28

This result is relevant to understand the dependence of the
thermal conductivity of superlattices on the temperature: since
interface resistance is not dependent on the temperature, any
observed thermal conductivity change should result in the
modification of the contribution of internal phonon-phonon
scattering within the different layers forming the interface.

C. Effect of period thickness on the thermal resistance
of Si/Ge superlattices

In this section thermal conductances of Si/Ge superlattices
with period thicknesses ranging from 0.54 to 60 nm are
presented. An equilibrium temperature of 400 K is fixed as
fair compromise between the high temperature approximation
to which MD is bounded and the experimental thermal
conductance measurements available in the literature. As can
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FIG. 7. (Color online) Computed interface thermal conductance
G as a function of the period thickness. Comparison with data
extracted from thermal conductivity30 λ using λ = GLp .

be seen in Fig. 6, thermal conductance decreases by about
1 order of magnitude when period thickness increases from
0.5 to 5 nm. Then, it remains constant over the full 5 to
60 nm range. Other NEMD calculations performed at small
period thicknesses30 also showed that superlattice thermal
conductivity decreases with increasing period length. We
extracted the corresponding thermal conductance G from
λ/Lp and compared it to that obtained in the present work
(Fig. 7). We covered here the cases where layer thicknesses
approach and then exceed the characteristic length from which
the contribution of evanescent modes eventually arises. Here,
we define an evanescent mode as a nonpropagative surface
mode that exists at the interface formed by the two layers and
that is locally confined over a typical thickness. Note that in
the range 300 K to 500 K, Si and Ge have dominant phonon
mean free paths (MFPs) greater than 100 nm. Consequently,
phonons travel ballistically in the individual Si and Ge layers
and internal phonon-phonon scattering does not occur between
contacts.31

Previous NEMD works have also shown that phonon
transport in Ge/Si/Ge film is ballistic, while the phonon
transport in Si/Ge/Si film of the same thickness is somewhat
diffusive.32 It would be interesting to address with our EMD
approach the problem of the phonon transport in superlattices
made of different Si and Ge layer thicknesses.

D. Further comparisons with Green-Kubo cross-plane
thermal conductivity

Thermal transport models for semiconductor superlattices
usually deal with two extreme cases. When the phonon MFP
is much larger that the superlattices’ period thicknesses,
thermal conductivity is predicted from lattice dynamics.33

On the contrary, when the phonon MFP is shorter than the
superlattice period,31,34–36 thermal conductivity is calculated
using the Boltzmann transport equation (BTE). These models
are, however, inefficient at predicting thermal properties of
systems that are neither purely coherent nor purely diffusive.
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FIG. 8. (Color online) Computed thermal conductivity as a
function of the layer thickness using the GK method and that derived
from the contact resistance contribution.

In fact, lattice dynamics models overestimate coherence effects
and neglect anharmonicity whereas the BTE only reproduces
experimental results in the thick period range (Lp  MFP).
The purpose of this section is to propose and assess an
effective cross-plane thermal conductivity model based on
interface conductance and to compare it to the GK approach
for defining to what extent cross-plane thermal conductivity of
superlattices can be retrieved from interfacial conductance. As
mentioned, we remain in a situation where internal phonon-
phonon scattering is negligible. We used an effective thermal
conductivity model where the thermal conductivity λ = GLp,
G being the thermal conductance of the superlattice interface
of period Lp retrieved from MD. To compare those results,
we have implemented GK thermal conductivity calculations
for period thickness ranging from ∼2 to ∼60 nm using the
same equilibrium temperature as the thermal conductance
calculations (400 K). Fifteen ensemble averages have been
considered for each thermal conductivity point. Figure 8 shows
that thermal conductivity of Si/Ge superlattices is fully driven
by the interfaces’ contribution below layer thicknesses of 5 nm.
For larger thicknesses, (L > 10 nm), we predicted a thermal
conductivity of 50 W/m K−1 for a 60-nm-period superlattice
whereas the GK method predicts 40 W/m K−1. This seems to
indicate that internal phonon-phonon scattering starts to occur
in this regime.

The increase in thermal conductivity with increasing period
is explained by a decreasing of the contact density (the number
of interface per superlattice unit length) in the cross-plane
direction. This behavior has also been observed by Daly
et al.37 and Chen et al.38 We do not observe any saturation
of thermal conductivity at thicker periods because they remain
much smaller than the phonon MFP. One should expect such
a saturation for periods larger than 100 nm. In conclusion,
we have seen that thermal conductivity in perfect Si/Ge for
system periods below the dominant phonon MFPs can be
derived from interface resistances. In perfect materials with
similar high phonon MFP, one should also expect an increase
in thermal conductivity with increasing superlattice periods,
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indicating that phonon-phonon scattering is negligible and
coherence effects might be destroyed by inelastic scattering
at the contacts.

V. CONCLUSION

We formulated thermal interface conductance at the
nanoscale within the framework of the linear response theory
and presented an approach allowing us to retrieve thermal
interface resistance from EMD simulations. Heat conduction
mechanisms in various configurations of Si/Ge superlattices
have been studied showing that temperature has no influence
on phonon transmission. In addition, results clearly indicate
that superlattice thermal resistance exhibits two trends with
increasing period: Below 5 nm, thermal conductance decreases
with increasing thickness because evanescent modes still exist
over the full Si/Ge period. Above 5 nm, we observed a
drastic decrease in conductance which no longer depends
on thickness. Further confrontations with GK cross-plane
thermal conductivity calculations demonstrated that thermal
conductivity of Si/Ge superlattices can be deduced from inter-

face conductances when diffuse interface scattering occurs at
periods exceeding 5 nm. Thus, thermal conductivity increases
with increasing lattice periods as long as the dominant phonon
MFP involved remains larger than the superlattice period.
This indicates that interfacial scattering in perfect superlattices
remains the predominant source of scattering in very large
phonon MFP materials. It also demonstrates that coherency
effects are not as important as expected in such systems
where anharmonicity of interfaces seems to play a key role.
An interesting extension of this work would be to include
defects and roughness at the interface39 and see how this affects
interfacial conductance at various period thicknesses.
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