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Amorphous carbon (a-C) is an important material often used in microelectronics. Using a recently

developed approach, termed Green–Kubo modal analysis, we were able to calculate the thermal

conductivity of a-C, which yielded excellent agreement with experiments, by employing a simple

correction to the specific heat. The results show that the heat capacity substantially limits the ther-

mal conductivity of a-C at room temperature and it is dominated by contributions from diffusons

between 10 and 40 THz. Furthermore, the phonon relaxation times in a-C do not vary significantly

with increasing temperature, which is quite unusual by comparison with the behavior observed for

other materials. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4948605]

Amorphous carbon (a-C) layers, also known as

diamond-like carbon (DLC) films, have been widely applied

as solid lubricants, protective coatings, and wear-resistant

coatings.1–3 The tribology of a-C coatings has been the sub-

ject of intensive studies for the last 20 years, and a number

of experiments have also examined the tribological proper-

ties of a-C films.4–6 Also, more recently, heat-assisted mag-

netic recording (HAMR) shows a great potential of

increasing data density for hard disk storage7–9 and under-

standing heat conduction in HAMR devices becomes crucial,

because of the introduction of a laser as a heat source in the

system.10 In order to facilitate high power density heat dissi-

pation to the environment, the thermal conductivities of the

lubricant layer, DLC films, and media layers become very

important.

Prior work has measured the thermal conductivity of

a-C layers,11,12 but the phonons that are responsible for its

thermal conductivity have yet to be determined, which

would highlight any potential pathways toward increasing it.

Molecular dynamics (MD) simulations are often used to

study thermal transport, but equilibrium MD, via the

Green–Kubo (GK) formula, predicts the thermal conductiv-

ity of a-C to be very high (>15 W m�1 K�1) at room temper-

ature, which is inconsistent with the experiments (�3 W m�1

K�1). This, however, is most likely due to the fact that MD

is a classical method and therefore is unable to capture the

quantum effects on the mode heat capacity at low tempera-

tures. The notion of low temperature nonetheless is relative,

as it generally refers to the temperature regime where the

majority of the phonons reside in their ground state. For car-

bon materials, such as diamond, graphene,13 and amorphous

carbon, at room temperature the heat capacity is far below

Dulong–Petit limit, which shows that most of the vibrational

modes (60%) are not excited. As a result, for the temperature

regime where the heat capacity is far below the Dulong–Petit

limit, the GK method using classical MD is generally under-

stood to be inapplicable. However, it may be possible that

the discrepancy between classical MD-GK predictions and

experiments could be resolved if one knew the contributions

of different phonons made to the thermal conductivity as a

function of phonon frequency, since the heat capacity of

phonons only depends on their frequency and temperature.

One could then presumably apply a quantum correction to

the phonon/normal mode heat capacities to obtain reduced

contributions for the many modes that are not fully excited,

thereby resulting in a reduced thermal conductivity that

might agree more properly with experiments. This approach

has been employed previously by Lv and Henry, and excel-

lent agreement with experiments was obtained for amor-

phous silicon (a-Si) and silica (a-SiO2).14,15

Turney and McGaughey16 have shown that applying

such quantum specific corrections to crystalline materials is

not in general rigorously correct, because it ignores a second

quantum effect, namely, that reduced modal amplitudes

affect not only the mode heat capacities but also the

mode–mode interactions. This effect is intuitive, since the

time it takes for a mode to couple to other modes is largely

dependent on the amplitudes of the other modes, which is

why wave packet studies require the amplitudes of all other

modes to be zero.17 However, one can envision instances

where this second effect, which manifests itself in classical

MD simulations as shorter relaxation times, can become neg-

ligible. For example, when the phonon–phonon interactions

are more so dictated by the structure/composition as opposed

to the intrinsic anharmonic coupling between low and high

frequency phonons, it is possible that another mechanism

will dominate the low frequency phonon–phonon interac-

tions—which are the only interactions that remain important

at low temperature, where most modes are not excited.

Several examples of this situation could be a crystal at low

temperatures, where the relaxation times are limited by the

sample boundaries; a nanostructure (i.e., a nanowire) where

the relaxation times are limited by its boundaries; a random

alloy where the relaxation times are limited by point defect

scattering; or presumably an amorphous material, where it is

not clear if the relaxation times are an appropriate descriptor

for the mode thermal conductivity.18 In all of these cases, it

is possible that a simple heat capacity correction will be
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sufficient and will therefore yield good agreement with

experiments as was found previously by Lv and Henry.14,15

Nonetheless, it is important to acknowledge that applying a

quantum correction only to the heat capacity is not formally

correct, although it may yield accurate predictions if the

second effect is negligible.

The primary reason the dominant phonons in a-C are

unknown is because the traditional thermal conductivity

analysis methods that have been proven and applied to crys-

tals become highly questionable in an amorphous mate-

rial.15,18 The key difference is the fact that the structural

disorder in an amorphous material changes the fundamental

character of the vibrational modes. In amorphous materials,

the normal modes of vibrations (e.g., phonons) are differenti-

ated into three categories, namely, propagons, diffusons, and

locons.19,20 Propagons and diffusons are both delocalized

modes,20,21 but only propagons exhibit spatially periodic

repeating vibrations that correspond to that of a propagating

mode. These vibrations typically exhibit sinusoidal modu-

lated displacement/velocity profiles similar to the phonons

in crystalline materials. As a result, one can define their

wavelength, wave-vector, and velocity, allowing them to be

treated by expressions based on the phonon gas model

(PGM).22 Diffusons, however, do not propagate, since there

is almost no spatial periodicity in their vibrations. This then

prevents one from defining their wavelength, wave-vector,

and velocity, which then prevents rigorous invocation of

expressions for their contribution to thermal conductivity

based on the PGM.

The problem is then that the majority of the modes in

disordered materials are diffusons14,21 and Allen and

Feldman19,21,23 developed the first scheme for assessing their

thermal conductivity contributions without using PGM.

However, although the A-F method explains the qualitative

temperature dependence of thermal conductivity in a-Si,19 it

is quantitatively less accurate for other amorphous materi-

als.24 Recently, Lv and Henry, however, developed an

alternative method, termed Green–Kubo modal analysis

(GKMA) which is similar in spirit to the A-F method, but is

more general in the sense that it can be uniformly applied to

all phonons/normal modes without modifications based on

the mode character, and it naturally includes temperature

dependent anharmonicity, which was absent in the A-F

model. In this sense, GKMA can treat both ordered crystals

and disordered materials through one unified formalism. The

GKMA method reproduces the results of other accepted

methods for crystals and yields excellent agreement with

experiments for a-Si and a-SiO2 when a quantum correction

is applied to the mode heat capacity.14,15 In the following we

show that GKMA also accurately reproduces the experimen-

tally measured thermal conductivity of a-C, and also eluci-

dates which phonons are responsible for it.14

Equilibrium MD simulations were performed using the

Large-scale Atomic/Molecular Massively Parallel Simulator

(LAMMPS).25 The a-C structure is generated using a melt-

quenching method as described by Li et al.26 and we used

the modified Tersoff potential27 proposed by Sha et al.28 that

has been tested to accurately reproduce the mechanical prop-

erties of DLC and DLCH (hydrogenated diamond-like

carbon). In order to offer the most fair comparison with the

experimental results, we used a DLC structure with a density

of 3.0 g/cm3, which is identical to the DLC measured in the

experiments.11 This is important, because the thermal con-

ductivity of a-C is known to depend strongly on the density,

which ultimately determines the sp2/sp3 bonding ratio

(e.g., graphite/diamond like bonding). After quenching the

structure to the desired density (3.0 g/cm3), we relaxed the

structure first using a constant number of atoms, volume, and

temperature (NVT), for 500 ps. After equilibration, all simu-

lations are run with 0.25 fs time-step under NVE ensemble

for 5 ns to collect sufficient statistics for the thermal conduc-

tivity computation. The total heat flux and mode heat flux

are calculated every 5 fs to save computational time, and it

was verified that the total thermal conductivity does not

change with the frequency of the heat flux calculations (i.e.,

outputting the heat flux every 5 fs yields the same answer as

every 0.25 fs). The lattice dynamics calculations were con-

ducted in the General Utility Lattice Program (GULP),29

which resulted in the eigenvectors and frequencies.

Figure 1(a) shows the inverse participation ratio (IPR)

of modes in a-C at different frequencies,14,19 which high-

lights the third category of modes, which are termed locons.

Locons are localized modes that typically occur at high fre-

quencies, as one can see that the transition between diffusons

and locons occurs around 65 THz, also indicated by the gray

FIG. 1. (a) IPR of modes in a-C; the dashed-dotted line represents the cut-

off (6 THz) between propagons and diffusons, which is estimated from

checking vibrational shapes; the gray dashed line represents the cut-off (65

THz) between diffusons and locons, which is estimated from IPR of modes;

(b) the black curve is the phonon density of states of a-C; the three color-

shaded areas demonstrate how Bose–Einstein statistics suppress the heat

capacity associated with certain modes, which was calculated by multiplying

the quantum correction (
cquantum

cclassic
) times density of states. The red, blue, and

gray regions represent 300 K, 200 K, and 100 K, respectively, and the sup-

pression is significant for all three temperatures. The red dashed line repre-

sents the cut-off frequency (36 THz) where the modes have non-negligible

contribution to the thermal conductivity at 300 K. The modes with higher

frequency have negligible contribution to the thermal conductivity at 300 K.

(c) Thermal conductivity accumulation vs. mode frequency for a-C using

GKMA at different temperatures with and without the quantum specific heat

correction.
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dashed line. Since the locons are not excited at room temper-

ature, they are unable to contribute to the thermal conductiv-

ity. The cut-off between propagons and diffusons happens at

around 6 THz as shown by the gray dashed-dotted line in

Fig. 1. The cut-off frequency is estimated by inspecting the

normal mode shapes. Figure 1(b) shows the calculated

density of states (DoS) for a-C and the color-shaded regions

represent the specific heat suppression function times DoS,

DoSðxÞ � CðxÞquantum

CðxÞclassic
at three temperatures (100 K, 200 K, and

300 K). At Dulong–Petit limit, the classic volumetric mode

specific heat is kB

V , which is a constant. Hence, the area under

the black DoS curve is proportional to the Dulong–Petit spe-

cific heat. And the areas of the color-shaded zones represent

the quantum corrected specific heat at the three temperatures.

Fig. 1(c) shows the thermal conductivity accumulation with

and without the heat capacity quantum correction at room

temperature (300 K). The red dashed line represents the cut-

off frequency where the mode thermal conductivity contribu-

tion becomes negligible (36 THz) at 300 K. Due to the stiff

bonds and light mass of carbon atoms, the frequencies in a-C

are high. Consequently, Figs. 1(b) and 1(c) show that only a

small fraction of the modes (<40%) can contribute to the

thermal conductivity at room temperature.

Figure 2 shows the relaxation times for low frequency

modes (<40 THz) at multiple temperatures (100 K, 200 K,

and 300 K), calculated using time domain normal mode anal-

ysis.15,30 The mode relaxation times decay rapidly following

a x�2 trend for the modes below 8 THz, as indicated by the

cyan dashed line in Fig. 2. Another interesting observation is

that the relaxation times are not strongly temperature

dependent, which is different from a-Si and a-SiO2.14,15

Figure 2(b) shows the mean relaxation times averaged in a

0.45 THz interval. It is obvious that the relaxation times do

not change significantly when increasing temperature, and

the relaxation times of the modes with frequency between 10

and 40 THz even increase at 300 K. In order to quantify the

change in relaxation times with temperature, we compared

the ratio of the relaxation times at 300 K to 100 K for a-C

and a-Si. As shown in Figure 3(b), the relaxation times

reduce from 100 K to 300 K in a-Si, where on average the

values at 300 K are �58.8% of their values at 100 K. This is

due to the increased anharmonicity and interactions with

other modes, which reduce the time a mode can remain

correlated with itself. However, in Fig. 3(a), the same ratio

between relaxation times at 100 K and 300 K for a-C is, on

average, slightly larger than unity �125%. Given the large

spread in the relaxation time ratio, the average serves as only

a rough indication of the behavior, yet it is quite remarkable

that on average the relaxation times are roughly equivalent at

the two temperatures. Furthermore, even though there is a

wide spread in the relaxation time ratios, the average still

provides some meaningful perspective since the non-

quantum corrected GK thermal conductivity ratios (j100K=
j300K) for a-Si and a-C are 1.25 and 2.25, respectively. This

result is interesting, because it supports the arguments put

forth by Lv and Henry, which have been presented

elsewhere,18 that the relaxation time is not an appropriate

descriptor for describing transport via non-propagating

modes. In this sense, non-propagating modes will likely

require the creation of a new descript that differs from the

PGM to properly describe their transport.

FIG. 2. (a) Relaxation times calculated

from time-domain normal mode analy-

sis at different temperatures (100 K,

200 K, and 300 K) for a-C. The low

frequency modes’ relaxation times

decay proportional with x�2. The

relaxation times change minimally

between 100 and 300 K. (b) The aver-

aged relaxation times vs. frequency.

The mean relaxation times are calcu-

lated in equal frequency (0.45 THz)

intervals, which then more clearly

shows the minimal differences in

relaxation times as temperature

changes.

FIG. 3. The ratio of the relaxation times at 300 K to the relaxation times at

100 K for (a) a-C and (b) a-Si. For a-C, the ratios oscillate about unity,

which indicates that the relaxation times are insensitive to the temperature

change. However for a-Si, ratio falls below unity, indicating the usual

behavior, whereby relaxation times decrease with increasing temperature.
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Figure 4 shows a 3D view of the mode–mode correla-

tions, where the two axes in horizontal plane represent the

frequencies of the two modes interacting, while the vertical

axis is the magnitude of the correlation between the two

modes and represents the thermal conductivity contributions

in Fig. 4. The gray lines represent the cut-off lines as shown

in Fig. 1(a). The diagonal elements represent the auto-

correlations, which is the dominant contribution for a-C.

Interestingly, it is also clear from Fig. 1 that the diffusons

between 10 and 40 THz comprise 70% of the room tempera-

ture thermal conductivity. The four gray cut-off lines frame

the diffuson region. By inspection of the normal mode

shapes, the frequency range where the mode character

switches from that of propagons to diffusons occurs around 6

THz. This then suggests that propagons only comprise 13%

of the thermal conductivity at room temperature. The result

is somewhat counter-intuitive given the fact that at room

temperature the specific heat is less than 20% of the

Dulong–Petit limit for a-C, which is close to the regime

where many crystals such as silicon experience their peak

thermal conductivity where anharmonicity begins to domi-

nate over other scattering mechanisms. The intuition inferred

from studying crystalline materials would then suggest that

at such a low temperature, the dominant phonons should

have low frequencies and long mean free paths given the

suppression of most other modes. However, the results indi-

cate that unlike a crystalline material, in a-C the lowest

frequency modes do not have the highest thermal conductiv-

ity contributions on a per mode basis and they do not domi-

nate the thermal conductivity at low temperature.

Figure 5(a) shows the comparison of GKMA and GK

predictions at five different temperatures (100 K, 150 K,

200 K, 250 K, and 300 K) along with experimental data from

Shamsa et al.11 The GK predicted thermal conductivity is

much higher than the experimental values and the trend is

incorrect. However, the results show that even though the

GK prediction is far too high, the underlying mode–mode

interactions contained in the classical MD simulations are

still meaningful, because the quantum correction on the heat

capacity, enabled by GKMA, brings the predictions into

excellent agreement with experiments. Figure 1S in supple-

mentary material31 shows the prediction of GKMA for the

temperature range from 0 K to 500 K. The continuous curve

is calculated from the interpolation of the mode thermal con-

ductivity at the five temperatures, and the interpolation

scheme is described in the supplementary material.31 The

thermal conductivity continues to increase, not saturated

even at 500 K, since there are more modes starting to activate

and contribute to the thermal conductivity. The data in Fig. 4

show minimal interactions between low and high frequency

modes, and thus, the hypothesis that the second quantum

effect on phonon–phonon interactions is negligible appears

confirmed by the good agreement obtained by only including

the first quantum effect on the heat capacity. At room tem-

perature, more than 60% of the modes in a-C are not excited

and therefore cannot contribute to the thermal conductivity

and it is quite remarkable that when these contributions are

suppressed by the quantum heat capacity correction, the

remaining contributions reproduce the experimental values

and trend correctly.

FIG. 4. Thermal conductivity contributions from mode–mode correlations

with (a) and without (b) quantum correction (300 K) of a-C. The gray lines

represent where the mode character changes from that of propagons to diffu-

sons and diffusons to locons. The rectangular region that is framed by the

gray lines represents the diffuson contributions, and from (b), it is clear that

the majority of the thermal conductivity contributed by diffusons and is pri-

marily due to the autocorrelations.

FIG. 5. Thermal conductivity vs. temperature for a-C comparing with

experiments.11 Reproduced with permission from Appl. Phys. Lett. 89,

161921 (2006). Copyright 2006 American Institute of Physics. GK calcu-

lated results (blue) and GKMA calculated results (red) at 5 temperatures

(100 K, 150 K, 200 K, 250 K, and 300 K). The continuous thermal conductiv-

ity vs. temperature (0 K to 500 K) result interpolated from the five tempera-

ture spectral thermal conductivity is shown in the supplementary material.31
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In this letter, we used the GKMA method to study the

mode level contributions to the thermal conductivity of a-C,

using the Tersoff potential. The phonons in a-C range from 0

to 100 THz and at room temperature (300 K) or lower, less

than 40% of the modes are excited. As a result, the native

GK method over predicts the thermal conductivity by a fac-

tor of �3�, but by obtaining the individual mode contribu-

tions through GKMA, application of a quantum heat

capacity correction suppresses the contributions of high fre-

quency modes, bringing the corrected results into excellent

agreement with experiments. The modal analysis also

revealed that even though the thermal conductivity of a-C is

strongly temperature-dependent the relaxation times are not,

and thus it further brings into question whether or not relaxa-

tion times are useful descriptors for non-propagating mode

contributions. Finally, it was found that, at room tempera-

ture, propagons only comprise 13% of the thermal conduc-

tivity and thus the majority of the thermal conductivity of a-

C comes from diffusons, even though at 300 K, more than

60% of the modes (x > 36 THz) are suppressed by their spe-

cific heat.
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